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Toward Correctly Rounded Transcendentals

Vincent Lefévre, Jean-Michel Muller, Member, IEEE, and Arnaud Tisserand

Abstract—The Table Maker’s Dilemma is the problem of always getting correctly rounded results when computing the elementary
functions. After a brief presentation of this problem, we present new developments that have helped us to solve this problem for the
double-precision exponential function in a small domain. These new results show that this problem can be solved, at least for the

double-precision format, for the most usual functions.

Index Terms—Floating-point arithmetic, rounding, elementary functions, Table Maker’s Dilemma.

1 INTRODUCTION

HE IEEE-754 standard for floating-point arithmetic [2],

[11] requires that the results of the arithmetic opera-
tions should always be correctly rounded. That is, once a
rounding mode is chosen among the four possible ones, the
system must behave as if the result were first computed
exactly, with infinite precision, then rounded. There is no
similar requirement for the elementary functions. The pos-
sible rounding modes are:

« round toward —: V(x) is the largest machine number
less than or equal to x;

« round toward +: A(X) is the smallest machine num-
ber greater than or equal to x;

« round toward 0: Z(x) is equal to V(x) if x > 0, and to
A(X) if x<0;

« round to the nearest: /M) is the machine number
which is the closest to x (with a special convention if x
is exactly between two consecutive machine numbers).

Throughout this paper, “machine number” means a
number that is exactly representable in the floating-point
format being considered. The first three modes are called
“directed modes.” A very interesting discussion on the cur-
rent status of the IEEE-754 standard is given by Kahan [13].

Our ultimate goal is to provide correctly rounded ele-
mentary functions at a “reasonable” cost. Requiring cor-
rectly rounded results not only improves the accuracy of
computations, it is the best way to make numerical soft-
ware portable. Moreover, as noticed by Agarwal et al. [1],
correct rounding facilitates the preservation of useful
mathematical properties such as monotonicity, symmetry,1
and some identities.

Throughout the paper, we want to implement a function
f (f being sine, cosine, exponential, natural logarithm, or
arctangent) in a radix-2 floating-point number system, with

1. Only when the rounding mode itself is symmetric, i.e., for rounding to
the nearest and rounding toward zero.
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n mantissa bits. We assume that, from any real number x
and any integer m (with m > n), we are able to compute an
approximation of f(x) with an error on its mantissa y less
than or equal to 2~™*1. This can be achieved with the pres-
ently known methods, using polynomial or rational ap-
proximations or Cordic-like algorithms, provided that a
very careful range reduction is performed [20], [12], [23],
[7], [18]. The intermediate computations can be carried out
using a larger fixed-point or floating-point format.

Therefore, the problem is to get an n-bit mantissa float-
ing-point correctly rounded result from the mantissa y of an
approximation of f(x), with error +2=™1, This is not possi-
ble if y has the form:

« inrounding to the nearest mode,

m bits

1. XXXXX. .. XXX 1000000...000000 xxX...
RAUAAYSRERANY

n bits

or
m bits

1oXXXXX...xxx 0111111111111 xxX...;
_

n bits

« inrounding toward 0, +eo, OF —eo modes,

m bits

1. XXXXX. .. XxX 0000000...000000 xxx...

n bits

or

m bits

1OXXXXX... XXX 1111111111111 XXX....
—_———

n bits

This problem is known as the Table Maker’s Dilemma
(TMD) [11]. For example, assuming a floating-point arithm-
etic with 6-bit mantissa,

sin(11.1010) = 0.0|111011|01111110...,

a problem may occur with rounding to the nearest if the
sine function is not computed accurately enough. Another
example (obtained using our methods) is the following.
Assume |IEEE-754 double precision arithmetic. The natural
(radix e) logarithm of:

101.01101101101110011111100100111010010110111110000110

is
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TABLE 1
WORST CASES FOR n-DIGIT MANTISSA, RADIX-10,
FLOATING-POINT NUMBERS BETWEEN 1 AND 2,
DIRECTED ROUNDING MODES, AND THE COSINE FUNCTION

n | x cos(X)
4 1.149 0.409400000428...
5 1.6406 -0.69747000000219...
6 1.41162 0.15850500000180...
7 1.225910 0.33808970000005907...
8 1.9509449 —0.37105844000000012...
53 bits
1.1011000100010010010000001100101110100010100100001101
53 times
1000...01101...

A problem may occur with rounding to the nearest if the
logarithm is not computed with at least 108 bits of accuracy.

Although we deal with radix-2 floating-point systems,
the same problem obviously occurs with other radices.” For
instance, in a radix-10 floating-point number system, with
four digit mantissas,

sin(73.47) = —0.]9368 | 0000058...,

therefore, a problem may occur with a directed rounding
mode. Similar problems with radix-10, directed rounding
modes, and the cosine function are given in Table 1.

Our problem is to know if there is a maximum value for
m and to estimate it. If this value is not too large, then com-
puting correctly rounded results will become possible.

It is worth noticing that, even if the maximum value of m
is quite large, it is not necessary to always evaluate f(x) with
large accuracy. The key point is that if the intermediate ap-
proximation y is not accurate enough, we are in one of the
four cases listed above, so we can be aware of the problem.
This leads to a solution first suggested by Gal and Bachelis
[10], and thoroughly analyzed by Ziv [24]: We first start to
approximate f(x) with a value of m slightly larger than n
(say, n + 10). In most cases, this will suffice to get a correctly
rounded result. If this does not suffice, we continue with a
larger value of m, and so on. We increase m until we have
enough accuracy to be able to correctly round f(x). In a
practical implementation of this strategy, the first step may
be hardwired and the other ones are written in software. It
is very important that the first steps (say, the first two steps)
be fast. The other ones are unlikely to occur, so they may be
slower without significantly changing the average compu-
tational delay.

In 1882, Lindemann showed that the exponential of a
nonzero (possibly complex) algebraic number is not alge-
braic [3]. From this, we easily deduce that the sine, cosine,
exponential, or arctangent of a machine number different
from zero cannot be a machine number (and cannot be ex-
actly between two consecutive machine numbers), and the
logarithm of a machine number different from 1 cannot be a
machine number (and cannot be exactly between two con-
secutive machine numbers). Therefore, for any nontrivial
machine number x (the cases x = 0 and x = 1 are obviously

2. Other radices are actually used. For example, most pocket computers
use radix 10.
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handled), there exists m such that the TMD cannot occur.
This is not always true for functions such as 2*, log, x, or x”:

« The number 2°, where x is a machine number, may be
a machine number if x is an integer (e.g., 2° = 4). And

yet, if x is not an integer, 2* cannot be a rational num-
ber (hence, it cannot be a machine number or the
midpoint of two consecutive machine numbers);

« The number log, X, where x is a machine number, is a
machine number if and only if x is an integral power

of 2 (e.g., log, 1024 = 10);

« It is more difficult to predict when x’ can be a ma-
chine number. For instance:

10013 = 1111101,

(that is, (25/16)%/? = 125/64).

This is why we do not consider these functions in this pa-
per: More precisely, the methods for exhaustive testing that
we give in the next sections could be fairly easily adapted
to 2" and log, x, but it seems difficult to adapt them to .
Since there is a finite number of machine numbers x,
there exists a value of m such that for any x the TMD cannot
occur. Schulte and Swartzlander [21], [22] proposed algo-
rithms for producing correctly rounded results for the
functions 1/x, v/x, 2*, and log, x in single-precision. Those
functions are not discussed here, but Schulte and
Swartzlander’s result helped us to start our study. To find
the correct value of m, they performed an exhaustive search
for n =16 and n = 24. For n = 16, they found m = 35 for log, x
and m = 29 for 2*, and for n = 24, they found m = 51 for log, x

and m = 48 for 2°. We performed similar exhaustive searches
for very small values of n and a few different exponents
only, and always found m close to twice n. For instance, the
largest value of m for cosines of single-precision numbers
between 1 and 2 is obtained for 3 numbers, including

8,791,717

whose cosine equals

0.01111111110011110101110000111111111111111111111111
24 24

000011101...

For this number, m = 50. One would like to extrapolate
those figures and find m = 2n.

In [17], two of us showed that if the bits of f(x) after the
nth position can be viewed as if they were random se-
quences of zeros and ones, with probability % for 0 as well
as for 1, then, for n-bit mantissa normalized floating-point
input numbers, assuming that n, different exponents are

considered, m is close to 2n + log,(n,) with very high
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probability.3 Similar probabilistic studies have been done
previously by Dunham [9] and by Gal and Bachelis [10].

Of course, probabilistic arguments do not constitute a
proof: They can only give an estimate of the accuracy re-
quired during the intermediate computation to get a cor-
rectly rounded result. There are a few results from number
theory that can be used to get an upper bound on the
maximum value of m. Unfortunately, such bounds are very
large. In practice, they appear to be much larger than the
actual maximum value of m. For instance, using a theorem
due to Nesterenko and Waldschmidt [19], we could show
[17] that getting correctly rounded results in double-
precision could be done with m = 1,000,000. Although
computing functions with 1,000,000 digits is feasible (on
current machines, this would require less than half an hour
using Brent’s algorithms [5] for the functions and Zuras’
algorithms [25] for multiplication), this cannot be viewed as
a satisfactory solution. Moreover, after the probabilistic ar-
guments, the actual bound is likely to be around 110. There-
fore, we decided to study how could an exhaustive search
of the worst cases be possible.

2 EXHAUSTIVE TESTS

For a given elementary function f, a given floating-point
format (in practice, IEEE-754 double precision), a given
rounding mode, and a given range (ideally, the range of all
machine numbers for which the function is mathematically
defined, but this may be difficult in some cases), we want to
find “worst cases.” A “worst case” is a machine number X,
belonging to the considered range, for which the distance
between f(x) and a machine number (for directed rounding
modes) or the distance between f(x) and the middle point of
two consecutive machine numbers (for rounding to the
nearest) is minimal. Here, “distance” means “mantissa dis-
tance,” that is, the distance between f(x) and y is

|f(x) -y
zllogz‘f(x)u ’

To find such worst cases within reasonable time, we need to
develop efficient filters. A “filter” is an algorithm that al-
lows one to eliminate most cases, that is, that quickly elimi-
nates any number x for which the distance between f(x) and
a machine number or the middle point of two consecutive
machine numbers is far from being minimal. If the filter is
adequately designed, a very small fraction of the set of the
considered machine numbers will not have been filtered
out, so that we will be able to deal with these numbers later
on, during a second step, using more accurate, yet much
slower, techniques.

3. If all possible exponents are considered, this formula can be simplified:
With a p-bit floating-point number system, it becomes n + p. And yet, we
prefer the formula 2n + logy(n,) because, in practice, we seldom have to
deal with all possible exponents: When an argument is very small (i.e., its
exponents are negative and have a rather large absolute value), simple
Taylor expansions suffice to find a correctly rounded result. When an ar-
gument is very large, the value of the function may be too large to be repre-
sentable (for instance, with the exponential function), or so close to a limit
value that correctly rounding it becomes obvious (for instance, with the
arctangent function).
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We consider here two different filters. Both are based on
very low degree (consequently, valid on very small do-
mains only) polynomial approximations of the functions
being considered.

The exhaustive search is restricted to a given interval;
outside this interval other methods can be chosen. Indeed,
if x is small enough (less than 2> for double precision), an
order-1 Taylor expansion can be used, and if x is large
enough, the exponential gives an overflow, and the values
of trigonometric functions do not make much sense any
longer for most applications (although we prefer to always
return correctly rounded results).

A similar work for the single-precision floating-point
numbers has already been done by various authors [21],
[17]. Our methods have first been applied to the exponen-
tial function with double-precision arguments in the inter-

val [% 1). We are extending them to other intervals and
other functions. Results concerning other intervals cannot
be deduced from the results in [i, l), thus, these intervals

will have to be considered later.

Concerning the double-precision normalized floating-
point numbers (n = 53), there are 2°* possible mantissas (the
first bit is always 1), which is a large number. Thus, one of
the most important concerns is that the test program should
be as fast as possible, even though it is no longer portable
(we only used SparcStations). Indeed, one cycle per test
corresponds to approximately two years of computation on
a 100 MHz workstation: Saving any cycle is important!

2.1 First Filtering Strategy
2.1.1 Algorithm (General Idea)

The TMD occurs for an argument x if the binary expansion
of f(x) has a sequence of consecutive 0s or 1s starting from a
given position, where the position and the length of the
sequence depend on the final and the intermediate preci-
sions. The problem consists of checking for all x whether
these bits are all Os or all 1s and, in this case, finding the
maximal value of m for which the TMD occurs.

As explained previously, to get fast tests, we apply a
two-step strategy similar to Ziv’s [24]. The first step (that is,
the filter) must be very fast and eliminate most arguments;
the second one, that may be much slower, consists of testing
again the arguments that have failed at the first step by ap-
proximating f(x) with higher precision.

The first step consists of testing a given subsequence of
the binary expansion (bits of weight 2> to 2-™-Y) of an ap-

proximation of each f(x) with error 2. In our case, we have
chosen M = 86 (we explain why below). The test fails if and
only if these bits are the same, and the argument will have to
be checked during the second step. In the opposite case, one
can easily show that the bits 54 to M of the exact result cannot

all be equal. In the following, we assume f(x) = ¢”.

2.1.2 First Step: Overall Presentation

To perform the first step, the exponential function is ap-
proximated by a polynomial. The chosen polynomial must
have a low degree for the following reasons: on the one
hand, to reduce the computation time, on the other hand, to
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limit possible rounding errors. As a consequence, the ap-
proximation is valid on a small interval only.

Let us consider an interval [-27%%2%%) where r is a
positive integer (it will be about 15), in which we know a
polynomial approximation. We can use the formula

et+x — etleX’

where x is in this interval and t has the form (2¢ + 1) 2 to

test every argument in the range 1/2 to 1.
The main idea consists in determining a polynomial ap-
proximation of the exponential in the intervals [t — 2, t +
2%), then evaluating this polynomial at consecutive values
by the finite difference method [14], briefly recalled in Sec-
tion 2.1.4. This method is attractive, for it only requires ad-
ditions (two for each argument in the case of a polynomial
of degree two, which was chosen) and the computations
can be performed modulo 2->* (the first tested bit having
weight 27°%). Thus, the algorithm consists of two parts:

« the computation of the e's with error 2=° where t will
have the form (2¢ + 1)2 (and will be between 1/2
and 1),

« the computation of the e s with error 27, where x is
in [-2%, 2%, knowing ' with error 2,

For our tests, we chose r = 16, M = 86, and s = 88. These
parameters have been determined from an error analysis
(giving relations between r, M, and s) and hardware pa-
rameters, such as register width: Since we check bits of
weight 27> to 2™ of an approximation of each f(x), the
test is accelerated if these bits can be put in one 32-bit word.
This gives M = 54 + 32 = 86. The value of r is related to the
size of the approximation interval. We chose r such that an
approximation polynomial of degree 2 should suffice to get
an approximation error less than 2™ The number s
(slightly larger than M) was chosen such that anerror 2~ on

¢' leads to an error less than or equal to 2Mone™.

2.1.3 Computing the e's
We seek to compute u, = ¢ ““ with error 2=°, where y = 1/2
+ 2% 7 =22 and ¢ is an integer such that 0 < ¢ < 2°'",
The following method allows us to compute a new term
with only one multiplication (using the formula e** = e’.¢ )
with a balanced computation tree to avoid losing too much
precision, and without needing to store too many values u,,
the disk storage being limited.

ytez

We write € in base 2: € = €5_ {49 ;... €o. We have
et = ¢¥ gl0eft | elsoer,

where ¢; = (ez)2I : to simplify, e’ and the e;s are precomputed.
The problem now consists of computing for all 1 < {0, 1,
., h} containing h:
P = |_| e,

10l

where the ;s are the above precomputed values (e, = ¢).
For that, we partition {0, 1, ..., h} into two subsets that have
the same size (or almost) to balance, and we apply this
method recursively on each subset (we stop the recursion
when the set has only one element); then, we calculate all
the products xv, where x is in the first subset and v is in the
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TABLE 2
ILLUSTRATION OF THE FINITE DIFFERENCE METHOD,
WITHP(X) = X —xX*+1,xX’=0,AND h=1

APX) = | A2p(x) = A’P(X) =

X | PO | PX+1) | Apx+1) | AP(x+ 1)
- PX) —AP(X) | - APP(X)

0 1 0 4 6

1 1 4 10 6

2 5 14 16 6

3 19 30 22 6

4 | a9 52 28 6

5 | 101 80 34 6

6 | 181 114 40 6

7 | 295 154 46 6

8 | 449 200 52 6

9 | 649 252 58

10 | 901 310

1| 121

Once four consecutlve values of P are evaluated we compute three values of
AP, two values of A P and one value of A P using subtractions. After this,
evaluating a new value P(x;) requires three additions only.

second subset. The last products xv are computed later, just
before testing the corresponding interval.

These computations can be performed sequentially on
one machine: They only need several minutes.

2.1.4 Computing and Testing the s

The exponential e is approximated by 1+ x +%x2 on the

.
interval [-2=%, 2=%°]. The computation of the e' s using

that polynomial approximation is performed using the finite
difference method [14]. This method allows one to calculate
consecutive values of a polynomial of degree d with only d
additions for each value. It is probably known to most
readers, so, we just briefly recall it, to make the paper self-
contained. Assume we wish to evaluate a degree-d poly-

nomial P at regularly-spaced values Xxg, X; = Xy + h, X, = X +

2h, ..., X; =X + ih, .... Define the values:

* AP(X) = P(Xj:1) — P(x;),

« AP(X) = AP(Xiy) — AP(X),

o AP(X) = AP(0) — AP(),

o AP(x) = AP (xiy) — AP(X).
It is quite easy to show that, for any i, AdP(xi) is a constant
that only depends on P. This is illustrated in Table 2 in the
case P(x) = X =X+ 1, X, = 0 and h = 1. This shows that once
the first d + 1 values of P, then the first d values of AP, then
the first d — 1 values of AZP, ..., then the (constant) value of
A% are computed, it suffices to perform d additions to get a
new value of P.

In our problem (with h = 1 and x, = 0), the polynomial is
not given by its coefficients nor by its first values P(0), P(1),

., P(d), but by the elements P(0), A P(0), A’P(0), .... These
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values are more suited to our computations. They are the
coefficients of the polynomial in the base

{1,x, X(X =-1) X(X-1)(X-2) | }

2 ' 3!

The test of the bits cannot be performed with only one
instruction on a Sparc processor without modifications.
This test consists of testing whether a number is in a given
interval centered on 0 modulo 2. With the finite differ-
ence method, we can translate the interval so that its lower
bound is 0, and we can use an unsigned comparison to test
whether the number is in the interval; thus, we finally need
only one instruction.

Thus, the first step takes five cycles per argument on av-
erage (two 64-bit additions and one 32-bit comparison), the
time required by the other computations—branch instruc-
tions—being negligible on our SPARC-based machines,
since branch prediction almost always leads to the right
branching.

2.1.5 Parallelizing on a Computer Network

The total amount of CPU time required for our computa-
tions is several years. We wanted to quickly get the results
of the tests (within a few months). Therefore, we had to
parallelize the computations. We used the network of 120
workstations of our department. These workstations often
have a small load. We sought to use each machine at its
maximum without disturbing its user; in particular, the
process uses very little memory and there are very few
communications (e.g., file system accesses).

2.1.6 Second Step

The second step consists of a more precise test for the ar-
guments that failed during the first step. The exponential is
computed with a higher precision, chosen so that the prob-
ability that the test fails for an argument is very low.

We chose a variation of De Lugish’s algorithm [8] for
computing the exponential (since it contains no multiplica-
tion). The computations were performed on 128-bit integers
(four 32-bit integers). The algorithm was implemented in
assembly language (which is, for the present purpose, sim-
pler than in C language).

2.1.7 Improvements

The algorithm given above (first filtering strategy) was
used during the summer of 1996. We present the results in
Section 3. Since 1996, we have developed another filtering
strategy, presented in Section 2.2. Before examining that
strategy, let us notice some remarks that may help to accel-
erate the tests.

First, we can test both a function and its inverse at the
same time. As we would need to test twice as many num-
bers as before, it seems that we would save nothing, but
this is no longer true in combination with the following
methods.

Since testing a function and testing its inverse are
equivalent (the exponential of a machine number a is close
to a machine number b if and only if the logarithm of b is
close to the machine number a), we can choose the function
that is the fastest to test, i.e., the function for which the num-
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X3

Fig. 1. The 3-distance theorem. Construction of the first points.

ber of points to test is the smallest in the given domain; of
course, this choice may depend on the considered domain.

We can approximate a degree-2 polynomial by several
degree-1 polynomials in subintervals (which is not equiva-
lent to directly approximating the function by degree-1
polynomials). By doing this, the tests would require three
cycles per argument on average instead of five cycles. But,
we may do better: Now, we have a function that may be
simple enough (a translation of a linear function) to find an
attractive algorithm based on advanced mathematical
properties. This is done in the next section.

2.2 Second Filtering Strategy: Toward Faster Tests

As previously, we wish to know how close can f(x) be to a
machine number (or the middle point of two consecutive
machine numbers), where x is a machine number. Our sec-
ond approach is based on the 3-distance theorem [4], [15]. Let
us start from a circle and an angle o. We build a sequence of
points Xy, X,,... on the circle (see Fig. 1) as follows:

* X is chosen anywhere on the circle;
* X1 IS Obtained by rotating x; of angle «.

The 3-distance theorem says that, at any time during this
process (that is, for any given n, when the points X, X;, Xy,
..., X, are built), the distance between two points that are
neighbors on the circle can take at most three possible val-
ues. This is illustrated in Fig. 2. Moreover, there are infi-
nitely many values of n (number of points) for which the
distance between two points that are neighbors on the circle
can take two values.

To use this result, we will do the following:

e The initial domain is cut into subdomains small
enough to make sure that, within an acceptable error,
function f can be approximated by a linear approxi-
mation on each subdomain. We also assume that all
numbers in a subdomain I, as well as in f(l), have the
same exponent;
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3 X

8

Fig. 2. The 3-distance theorem. Construction of more points. There are
at most three possible distances between consecutive points.

* Now, let us focus on a given subdomain. We scale the
problem (input floating-point numbers, linear ap-
proximation) so that floating-point numbers now cor-
respond to integers. Therefore, our problem becomes
the following: Given a rectangular grid (whose points
have integral coordinates belonging to a given range),
a straight line, and a (small) real number ¢, are there
points of the grid that are within a distance e from the
line?

« We slightly modify the problem again: We translate
the line down by a distance e. Our initial problem is
equivalent to: Are there points of the grid that are
above the (translated) line and at a distance less than
2efrom it?

After these modifications, assuming that the translated
straight line is of equation y = ax — b, our problem becomes:
Is there an integer x, belonging to the considered domain,
and another integer i such that 0 < i —ax + b < 2¢? Now, we
compute modulo 1, and we look for an integer x such that
b — ax modulo 1 is less than 2e. Now, we can understand
how this problem is related to the 3-distance theorem. We
compute modulo 1: The reals modulo can be viewed as the
points of a circle, a given point being arbitrarily chosen for
representing 0. Adding a value a modulo 1 to some number
z is equivalent to rotating the point that represents z of an
angle 2ra. Therefore, by choosing x, = b and o = 274,
building the values b — ax (where x is an integer) is equiva-
lent to building the values x;, X,, X3 ... of the 3-distance
theorem.

Fig. 3 shows the various transformations from the TMD
problem to the modulo 1 problem, and from the modulo 1
problem to the 3-distance problem.

Now, we give a fast algorithm that computes the lower
bound on the distance d between a segment and the points
of a regular, rectangular grid. More details are given in [16].
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This algorithm is related to the 3-distance theorem and is an
extension of Euclid’s algorithm, which is used to compute
the development of a real number (the slope of the seg-
ment) into a continued fraction. We have seen, in the 3-
distance theorem, that there are infinitely many values of n
(number of points) for which the distance between two
points that are neighbors on the circle can take two values.
Let us call these distances % and & the ith time there are two
distances. The algorithm given below directly computes the
sequences ¥ and &, without having to build the points x;.

In the following, {x} denotes the positive fractional part of
the real number x, i.e., {x} = x —[x/.

As previously, let y = ax — b be the equation of the seg-
ment, where x is restricted to the interval [0, N —1]. The
following algorithm gives a lower bound on {b — ax}, where
x is an integer in [0, N — 1].

Initialization: y={a}; 0=1-{a};d={b}u=v=1;
Infinite loop:
if d<y)
while (y< 9)
if (u+v= N) exit
d=o0-y,u=u+y;
if (u+v = N) exit
y=y—0,V=V+u;
else
d=d-y;
while (6< y)
if (u+v = N)exit
y=y—-OV=Vv+u;
if (u+v=N)exit
d=o-y,u=u+y;
Returned value: d
yand J contain the lengths that appear in the 3-distance
theorem; u and v contain the number of intervals (arcs) of
respective lengths yand & (u + v is the total number of in-
tervals, i.e., the number of points). During the computa-
tions, d is the temporary lower bound (for the current num-
ber of points u + v), which becomes the final lower bound
when the algorithm stops.

3 RESULTS

In 1996, we tested the exponential function with double-
precision arguments in the interval [% 1), using the first

filtering strategy (see Section 2.1). We needed up to 121 ma-
chines during three months for the first step. The second
step was carried out in less than one hour on one machine.
The very same results were obtained in January 1997 with
the second filtering strategy (see Section 2.2). Thanks to this
better strategy, we needed only a few machines. The com-
putation was approximately 150 times faster than with the
first strategy (we tested 30 arguments per cycle on average).
Among all the 220 = 1,048,576 intervals, each containing
2% values, 2,097,626 exceptions have been found. From the
probabilistic approach, the estimated number of exceptions
was 2°! = 2,097,152. This shows that, in this case, the prob-
abilistic estimate is excellent. Our experiments allowed us
to perform an in-depth check of the probabilistic hypothe-
ses. For each double-precision number x, let us define an
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Fig. 3. Problem transformation from the TMD to the 3-distance problem.

integer k, such that the mantissa of ¢* has the following

form:

1

TABLE 3

COMPARISON BETWEEN EXPECTED AND
ACTUAL NUMBERS OF EXCEPTIONS

kg k.= kg ky = kg estimate
40 8,185 16,427 16,384.0
41 4,071 8,242 8,192.0
42 2,113 4,171 4,096.0
43 999 2,058 2,048.0
44 541 1,059 1,024.0
45 258 518 512.0
46 123 260 256.0
a7 63 137 128.0
48 43 74 64.0
49 14 31 32.0
50 5 17 16.0
51 7 12 8.0
52 1 5 4.0
53 2 4 2.0
54 1 2 1.0
55 1 1 0.5
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bbb, .. b, b, 000...001 ...

53 bits Ky bits

or
bbyby... beybey 111,110 ...

53 bits Ky bits

From the probabilistic hypotheses, k, > k, for given numbers
x and ky with a probability of 2%,
In Table 3, we give the following numbers as a function

of ko (with ko >40) for 1 < x < 1:

« the actual number of arguments for which k, = k;

« the actual number of arguments for which k, > k;

« the estimated (after the probabilistic hypotheses)
number of arguments for which k, > ko 2% x 227
ie., 2%k

We see that the probabilistic estimate is still very good.

Now, let us focus on the worst case, for the exponential

of double precision numbers between 1/2 and 1. This worst
case is constituted by the exception for k, = 55, namely
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X =
0.110101100110011111011111001000110101101000111011110000,
_ 471,483,227,223,279
"~ 562,949,953,421,312

with
exp x =10.010011111000010111001001011110
000011110111001110000 0 11111...1111 01 ...
54
Therefore, the value of m for the exponential function in
[% 1) in double-precision is 109 = 53 + 55 + 1. We are com-

puting the worst cases for the logarithm function. For in-

stance, one of the worst cases for logarithms of double pre-

~ and 1 + 351,040 x 27, and

cision numbers between 1 + 2
directed rounding, is
X =
1.0000000000100000100111000000011101101111011010000101,
_ 4,505,940,534,353,541

" 4,503,599,627,370,496

with
Inx = 27 x 1.00000100110011111001111101100000

10010011111111 000000000000...000000000 10110....
42

4 CONCLUSION

We have shown, using as an example the case of the expo-
nential function in [% 1), that correctly rounding the dou-

ble-precision elementary functions is an achievable goal.
Moreover, if all the values of m have the same order of
magnitude as the value we obtained for the exponential
function (this is likely to be true), always computing cor-
rectly rounded functions will not be too expensive. As said
in the introduction, correct rounding will facilitate the pres-
ervation of useful mathematical properties. And yet, to be
honest, we must say that there are a few examples for
which correct rounding may prevent us from preserving a
useful property. Let us consider the following example [18].
Assume that we use an IEEE-754 single-precision arithme-

tic. The machine number which is closest to arctan(230) is

13,176,795
8,388,608
Therefore, if the arctangent function is correctly rounded in

round-to-nearest mode, we get an arctangent larger than*
/2. A consequence of this is that, in our system,

tan(arctan(230)) = 22877 - x 10",

In this case, the range preservation property “]arctan x| is less
than z/2 for any x” is not satisfied due to the use of correct
rounding in round-to-nearest mode. This is a very peculiar
case. One can easily show the following property

7i
= 157079637050628662109375 > >

THEOREM 1. If a function f is such that:
« f(x) is defined for any x € [a, b],

4. But equal to the machine representation of 7/2.
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* € =mMiNye,pf(X) is @ machine number,
* d=maXx,.af(X) is @ machine number,

then if f(x) is computed with correct rounding (assuming
this is possible) for a machine number x € [a, b], the com-
puted value will belong to [c, d].

This property shows that the problem that occurred in
the previous example will not appear frequently with the
usual functions. For example, if they are correctly rounded
(in any rounding mode), sines, cosines, and hyperbolic tan-
gents will always be between -1 and +1.

Our programs were written for Sparc-based machines,
but a small portion of the code only is written in assembly
code so that getting programs for other machines would be
fairly easy. Of course, it is very unlikely that somebody will
be able to perform exhaustive tests for quadruple-precision
in the near future, but all the results of our experiments
shows that the estimates obtained from the probabilistic
hypotheses are very good so that adding a few more digits
to 2n + log,(n,) for the sake of safety will most likely ensure
correct rounding (it is important to notice that if correct
rounding is impossible for one argument, we can be aware
of that, so a flag can be raised). Therefore, we really think
that, in the next 10 years, libraries and/or circuits providing
correctly rounded double-precision elementary functions
will be available. Now, it is time to think about what should
appear in a floating-point standard including the elemen-
tary functions. Among the various issues that should be
discussed, one can cite:

« Should we provide correctly rounded results in all the
range of the function being evaluated (that is, for all
machine numbers belonging to the domain where the
function is mathematically defined) or in a somewhat
limited range only? Although we would prefer the
first solution, it might lead to more complex (and
therefore time-consuming) calculations when com-
puting trigonometric functions of huge arguments;

« Even if we provide correctly rounded results, should
we allow a “faster mode,” for which faithful rounding
[6] only is provided? Faithful rounding means that the
returned result is always one of the two machine
numbers that are nearest to the exact result. This is
not a rounding mode in the usual sense (for instance,
it need not be monotonic). Should we allow round-
ings that are intermediate between faithful rounding
and correct rounding, for instance, should we allow,
instead of rounding to the nearest, results that are
within ulp/2 + € from the exact result, for some very
small €?
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