Proofs by Exhaustive Tests in Small Precision

Vincent LEFÈVRE

Arénaire, INRIA Grenoble - Rhône-Alpes / LIP, ENS-Lyon

GdT Arénaire, 2009-11-19

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Outline

- Optimality of Algorithm 2Sum
- SIPE (Small Integer Plus Exponent)
- Optimal DblMult Error Bound

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

-

Image: A match a ma

Optimality of Algorithm 2Sum

Based on the article On the computation of correctly-rounded sums, by Peter Kornerup, Vincent Lefèvre, Nicolas Louvet and Jean-Michel Muller, 19th IEEE Symposium on Computer Arithmetic (Arith-19), 2009. Available on http://hal.inria.fr/inria-00367584.

Algo	orith	im 2Sum*
s b'	=	RN(a+b) RN(s-a)
a'	=	RN(s-b')
δ_b	=	RN(b - b')
δ_a	=	RN(a - a')
t	=	$RN(\delta_a + \delta_b)$

* due to Knuth and Møller.

- Floating-point system in radix 2.
- Correct rounding in rounding to nearest.
- Two finite floating-point numbers a and b.

 \rightarrow Assuming no overflows, this algorithm computes two floating-point numbers *s* and *t* such that:

$$s = RN(a+b)$$
 and $s+t = a+b$.

Question: Is this algorithm optimal in any precision $p \ge 2$?

[gdt200911.tex 33250 2009-11-19 01:57:37Z vin	c17/prunille]	< 🗗 🕨	- < ≣ >	< ≣ >	- 2	200
Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)		(GdT Aréna	ire, 2009-1	1-19	3 / 26

Optimality: In What Sense? Under What Conditions?

Optimality in time, size, depth?

Simple model:

- allowed operations: additions and subtractions;
- optionally minNum, maxNum, minNumMag, maxNumMag (IEEE 754-2008):
 - minNum and maxNum: minimum and maximum of 2 numbers;
 - minNumMag (resp. maxNumMag): the number with the smaller (resp. larger) magnitude, the minimum (resp. maximum) in case of equality;
- all operations take the same time;
- the first operation is RN(a + b), without significant loss of generality.

Other common (standard) operations are probably useless or equivalent (e.g. 2x).

- \rightarrow Minimality in term of:
 - number of operations (sequential time);
 - depth (parallel time).

The Mag2Sum Algorithm

If we have minNumMag and maxNumMag, we can derive a smaller algorithm from Fast2Sum:

Algorithm Mag2Sum s = RN(a + b) a' = maxNumMag(a, b) b' = minNumMag(a, b) z = RN(s - a')t = RN(b' - z)

- 5 operations instead of 6;
- depth 3 instead of 5.

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

< ロ > < 同 > < 回 > < 回 >

The Search for Minimal Algorithms

For the number of operations:

- enumerate all the possible algorithms (DAGs labelled by the operators) with at most *n* operations;
- equivalent DAGs (through obvious transformations in the order of operations and sign/add/sub changes) can be ordered, thus only one DAG can be kept;
- test each algorithm on 3 or 4 well-chosen pairs of inputs in precision *p* by comparing the result with the correct one;
- reject the algorithm if a result does not match.

For the depth:

- build a single DAG containing all the possible nodes at depth at most d;
- test the result of each node on 3 well-chosen pairs of inputs in precision *p* by comparing it with the correct one;
- take the maximum depth for which there is no match on the 3 pairs.

The Problem of the Precision

The number of possible precisions is infinite (or arbitrarily large).

The idea: choose the pairs of inputs in some form so that one can prove that a counter-example in one precision yields a counter-example in all (large enough) precisions.

Let us take $\varepsilon = ulp(1) = 2^{1-p}$ and choose numbers of the form $u + v\varepsilon$, where u and v are small integers. Example of 2Sum on one of the pairs:

algorithm	precision 12	precision 17	expr.	
а	1000.00000001	1000.0000000000001	$8 + 8\varepsilon$	
b	1.0000000011	1.000000000000011	$1 + 3\varepsilon$	
s = RN(a+b)	1001.00000001	1001.0000000000001	$9 + 8\varepsilon$	
b' = RN(s-a)	1.00000000000	1.000000000000000000	$1 + 0\varepsilon$	
a' = RN(s-b')	1000.00000001	1000.0000000000001	$8 + 8\varepsilon$	
$\delta_b = RN(b-b')$	0.0000000011	0.0000000000000011	$0 + 3\varepsilon$	
$\delta_a = RN(a - a')$	0	0	$0 + 0\varepsilon$	
$t = RN(\delta_a + \delta_b)$	0.0000000011	0.0000000000000011	$0 + 3\varepsilon$	

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

イロト イヨト イヨト イヨト

The Pairs of Input Numbers

Chosen after testing various pairs.

If $\uparrow x$ denotes nextUp(x), the least floating-point number that compares greater than x:

In precision $p \ge 4$, this gives:

$$\begin{array}{rll} a_1 &= 8 + 8 \, \varepsilon & b_1 \,=\, 1 + 3 \, \varepsilon \\ a_2 &= 1 + 5 \, \varepsilon & b_2 \,=\, 8 + 8 \, \varepsilon \\ a_3 &= 3 & b_3 \,=\, 3 + 2 \, \varepsilon \\ a_4 &= -a_1 & b_4 \,=\, -b_1 \end{array}$$

Precisions 2 to 12 (or 11) are tested. Results in precisions $p \ge 13$ can be deduced from the results in precision 12 (or 11).

[gdt200911.tex 33250 2009-11-19 01:57:37Z vin	c17/prunille]	< 🗗)	 < Ξ > 	< ≣ >	- E	9 Q (?
Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)			GdT Aréna	ire, 2009-1	1-19	8 / 26

The Proof of the Equivalence in Any Precision $p \ge 12$

Let us consider a computation DAG of maximum depth *n*. Here, n = 6. Assume that $p \ge n + 6$ (here, $p \ge 12$). We define: $\varepsilon_p = ulp(1) = 2^{1-p}$. Main properties to be proved:

- the value of any node of the DAG has the form $u + v\varepsilon_p$, where u and v are "small" integers ($|v\varepsilon_p| < 1/2$) that do not depend on the precision p;
- since the integers u and v are small enough (see next slides), two values $u_1 + v_1 \varepsilon_p$ and $u_2 + v_2 \varepsilon_p$ are equal if and only if $u_1 = u_2$ and $v_1 = v_2$.

Note: we know that the depth of a minimal algorithm is bounded by 5, so that we could take n = 5 (but spurious algorithms might be obtained if the test is done in precision 11).

Ordering: $(u_1, v_1) < (u_2, v_2)$ if and only if $u_1 < u_2 \lor (u_1 = u_2 \land v_1 < v_2)$. Because of the above properties, this will be equivalent to: $u_1 + v_1 \varepsilon_p < u_2 + v_2 \varepsilon_p$.

The Proof of the Equivalence in Any Precision $p \ge 12$ [2]

For each node with inputs $u_i + v_i \varepsilon_p$ and $u_j + v_j \varepsilon_p$, we define the pair (u_k, \tilde{v}_k) as follows:

- add: $u_k = u_i + u_j$ and $\tilde{v}_k = v_i + v_j$
- sub: $u_k = u_i u_j$ and $\tilde{v}_k = v_i v_j$
- minNum: $(u_k, \tilde{v}_k) = \min((u_i, v_i), (u_j, v_j))$
- maxNum: $(u_k, \tilde{v}_k) = \max((u_i, v_i), (u_j, v_j))$
- minNumMag: (u_k, \tilde{v}_k) is (u_i, v_i) if

$$\begin{aligned} |u_i| < |u_j| &\lor (u_i = u_j = 0 \land |v_i| < |v_j|) \lor \\ (|u_i| = |u_j| \land v_i \times \operatorname{sign}(u_i) < v_j \times \operatorname{sign}(u_j)) &\lor \\ (|u_i| = |u_j| \land |v_i| = |v_j| \land (u_i, v_i) < (u_j, v_j)), \end{aligned}$$

else (u_j, v_j)

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

• maxNumMag: similar to minNumMag but changing the inequalities and we define v_k by: $RN(u_k + \tilde{v}_k \varepsilon_p) = u_k + v_k \varepsilon_p$.

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

< ロ > < 同 > < 回 > < 回 >

The Proof of the Equivalence in Any Precision $p \ge 12$ [3]

Properties to be proved by induction on the depth d of a node:

- The pair (u_k, v

 k) represents the exact value u_k + v

 kε_p (i.e., the value of the operation before rounding).
- Unicity of the representation: $|v_k| \varepsilon_p < 1/2$.
- $|u_k| \le 2^{d+3}$ and $|v_k| \le 2^{d+3}$.
- The values u_k and v_k are integers that do not depend on p.

The consequence of the first property will be that the pair (u_k, v_k) represents the rounded value.

Any initial value (depth 0) has the form $u + v\varepsilon_p$, where u and v are integers that do not depend on p, such that $|u| \le 8 = 2^3$ and $|v| \le 8 = 2^3$. Also, $|v|\varepsilon_p \le 2^{3+1-p} \le 2^{-n-2} < 1/2$.

gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Proof of the Equivalence in Any Precision $p \ge 12$ [4]

Assume that the properties are satisfied for both inputs (u_i, v_i) and (u_j, v_j) of the node.

- Proof of the first property, i.e. (u_k, \tilde{v}_k) represents the exact value $u_k + \tilde{v}_k \varepsilon_p$:
 - addition: $(u_i + v_i \varepsilon_p) + (u_j + v_j \varepsilon_p) = (u_i + u_j) + (v_i + v_j) \varepsilon_p = u_k + \tilde{v}_k \varepsilon_p$;
 - ▶ subtraction: $(u_i + v_i \varepsilon_p) (u_j + v_j \varepsilon_p) = (u_i u_j) + (v_i v_j)\varepsilon_p = u_k + \tilde{v}_k \varepsilon_p$;
 - ▶ minNum and maxNum: $(u_1, v_1) < (u_2, v_2) \Leftrightarrow u_1 + v_1 \varepsilon_p < u_2 + v_2 \varepsilon_p$;
 - minNumMag and maxNumMag...
- From the definition of u_k for each operation, u_k is an integer and one has:

 $|u_k| \leq 2 \max(|u_i|, |u_j|).$

Since the depth of each input is $\leq d - 1$, it follows that

$$|u_k| \le 2 \cdot 2^{d-1+3} = 2^{d+3}$$

Moreover the definition of u_k does not depend on p. This proves the properties on u_k .

[gdt200911.tex 33250 2009-11-19 01:57:37Z vin	c17/prunille]	< 🗗 🕨 🔸	ヨト ・	포 제 표	500
Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)		GdT	Arénaire,	2009-11-19	12 / 26

The Proof of the Equivalence in Any Precision $p \ge 12$ [5]

• For the same reasons, $|\tilde{v}_k| \leq 2^{d+3}$ and \tilde{v}_k is an integer that does not depend on p.

We need to prove that these properties are still satisfied after rounding, i.e., for v_k .

If $u_k = 0$ (which does not depend on p), then $v_k = \tilde{v}_k$ (since $|\tilde{v}_k| \le 2^p$), which proves the properties.

Now let us assume that $u_k \neq 0$.

Let *E* be the exponent of $u_k + \tilde{v}_k \varepsilon_p$, i.e.

$$2^{E} \leq |u_k + \tilde{v}_k \varepsilon_p| < 2^{E+1}.$$

Since $|\tilde{v}_k \varepsilon_p| \le 2^{d+3+1-p} \le 2^{n+4-p} \le 1/2$ and u_k is an integer, E depends only on u_k and the sign of \tilde{v}_k (it is the exponent of u_k , minus 1 if $|u_k|$ is a power of 2 and $u_k \tilde{v}_k < 0$); thus E does not depend on p.

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

イロト 不得 トイヨト イヨト 二日

The Proof of the Equivalence in Any Precision $p \ge 12$ [6]

The significand of $u_k + \tilde{v}_k \varepsilon_p$ as a number in $[2^{p-1}, 2^p]$ is

$$(u_k+\tilde{v}_k\varepsilon_p)2^{p-1-E}=u_k2^{p-1-E}+\tilde{v}_k2^{-E}.$$

The rounding of $u_k + \tilde{v}_k \varepsilon_p$ to $u_k + v_k \varepsilon_p$ can be defined as the rounding of its significand to an integer (which will be equal to $u_k 2^{p-1-E} + v_k 2^{-E}$).

Since $2^{E} \leq |u_{k}| \leq 2^{d+3}$, one has $2^{p-1-E} \geq 2^{p-1-d-3} \geq 2$, so that $u_{k}2^{p-1-E}$ is an even integer, thus will not have any influence on the relative rounding error, defined as $\delta = (\tilde{v}_{k} - v_{k})2^{-E}$.

If $\{x\}$ denotes the nonnegative fractional part of x, then $\delta = \{\tilde{v}_k 2^{-E}\} - \Delta$, where $\Delta = 0$ if the rounding is done downward and $\Delta = 1$ if the rounding is done upward; by definition of the rounding-to-nearest with the even rounding rule, $\Delta = 1$ if and only if one of the following two conditions holds:

•
$$\left\{\tilde{v}_k 2^{-E}\right\} > 1/2;$$

• $\left\{\tilde{v}_k 2^{-E}\right\} = 1/2$ and $\left\lfloor\tilde{v}_k 2^{-E}\right\rfloor$ is an odd integer.

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

The Proof of the Equivalence in Any Precision $p \ge 12$ [7]

As \tilde{v}_k and E do not depend on p, the value of δ does not depend on p, and the value of v_k does not depend on p either.

Moreover $v_k 2^{-E} = \lfloor \tilde{v}_k 2^{-E} \rfloor$ or $\lceil \tilde{v}_k 2^{-E} \rceil$, so that v_k is an integer.

And since $|\tilde{v}_k| \leq 2^{d+3}$ and $E \leq d+3$, it follows that $|\tilde{v}_k 2^{-E}| \leq 2^{d+3-E}$, which is an integer. Hence $|v_k 2^{-E}| \leq 2^{d+3-E}$, and

$$|v_k| \le 2^{d+3},$$
 then $|v_k| \varepsilon_p \le 2^{d+3+1-p} \le 2^{-2} < 1/2$

Assume that an algorithm \mathcal{A} (or computation tree) is excluded for some precision $p \geq 12$ because on some input pair (a_p, b_p) , \mathcal{A} does not yield the expected result $t_p = a_p + b_p - RN(a_p + b_p) = u + v\varepsilon_p$.

Let $t'_p = u' + v' \varepsilon_p$ be the obtained result by running \mathcal{A} .

By hypothesis, $t'_p \neq t_p$, so that $(u', v') \neq (u, v)$. And since in a precision $q \ge 12$, any real can have at most one (u, v) representation satisfying $|v| \varepsilon_q < 1/2$, $(u', v') \neq (u, v)$ implies $t'_q = u' + v' \varepsilon_q \neq u + v \varepsilon_q = t_q$.

Thus \mathcal{A} must be excluded for precision q.

Minimality of the size in precision $p \ge 2$

• The minimal add/sub algorithm giving the correct result is 2Sum (that is, with 6 operations); all the other equivalent algorithms reduce to 2Sum by using trivial transformations.

Test on 33,467,556 DAGs (first 3 pairs only).

- The only minimal add/sub/minNum/maxNum algorithm giving the correct result is 2Sum, i.e. minNum and maxNum are useless here. Test on 308,124,270 DAGs.
- The only minimal add/sub/minNum/maxNum/minNumMag/maxNumMag algorithm giving the correct result is Mag2Sum (5 operations).
 Test on 9,274,728 DAGs.

Minimality of the depth in precision $p \ge 2$

For add/sub algorithms, the minimality for precision $p \ge 4$ is proved by computing the 89,903,977 values of depth less or equal to 4 for each of the first 3 pairs, in precisions 4 to 12.

The proof of the minimality for precisions 2 and 3 needs a 4th pair to test:

- Precision 2: $a_4 = 1$ and $b_4 = 6$.
- Precision 3: $a_4 = 10$ and $b_4 = 1$.
- \rightarrow In precision $p \ge 2$, the depth is at least 5 (depth of 2Sum).

If minNum, maxNum, minNumMag and maxNumMag are allowed, let us consider a domain for which all the operations are exact (e.g., *a* and *b* are small integers), so that the expression without the rounding must be mathematically equivalent to 0; *a* and *b* must also both appear in the expression. Impossible at depth 2. \rightarrow Thus the depth is at least 3 (depth of Mag2Sum).

SIPE (Small Integer Plus Exponent)

Correct rounding provided by:

- most processors, fast but only in 24, 53 and 64 bits;
- MPFR, but slow in small precision because of overhead due to generic precision.
- \rightarrow Specific library for the small precisions: SIPE (Small Integer Plus Exponent).
 - Idea based on DPE (Double Plus Exponent) by Paul Zimmermann and Patrick Pélissier: a header file (.h) providing the arithmetic, where a finite FP number is represented by a pair of integers (*i*, *e*), with the value *i* · 2^{*e*}.
 - Focus on efficiency:
 - exceptions are ignored and unsupported inputs are not detected;
 - restriction: the precision must be small enough to have a simple and fast implementation, without taking integer overflow cases into account. The maximal precision is deduced from the implementation (and the platform).
 - Currently only the rounding attribute roundTiesToEven (rounding to nearest with the even rounding rule) is implemented.

SIPE: Provided Functions

Header file sipe.h providing:

- a macro SIPE_ROUND(X, PREC), to round and normalize any pair (*i*, *e*);
- initialization: via SIPE_ROUND or sipe_set_si;
- sipe_neg, sipe_add, sipe_sub, sipe_add_si, sipe_sub_si;
- sipe_nextabove and sipe_nextbelow;
- sipe_mul, sipe_mul_si;
- sipe_fma and sipe_fms (optional, see below);
- sipe_eq, sipe_ne, sipe_le, sipe_lt, sipe_ge, sipe_gt;
- sipe_min, sipe_max, sipe_minmag, sipe_maxmag, sipe_cmpmag;
- sipe_outbin, sipe_to_int, sipe_to_mpz.

Bound on the prec	cision:
-------------------	---------

FMA/FMS	32-bit integers	64-bit integers		
No	15	31		
Yes	10	20		

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

< ロ > < 同 > < 回 > < 回 > < 回 > <

SIPE: Implementation of Some Simple Operations

```
typedef struct { sipe int t i; sipe exp t e; } sipe t;
```

```
static inline sipe t sipe neg (sipe t x, int prec)
{ return (sipe t) { - x.i, x.e }; }
```

```
static inline sipe t sipe set si (sipe int t x, int prec)
\{ sipe t r = \{ x, 0 \}; \}
  SIPE_ROUND (r, prec);
  return r; }
```

```
static inline sipe_t sipe_mul (sipe_t x, sipe_t y, int prec)
{ sipe_t r;
 r.i = x.i * y.i;
 r.e = x.e + y.e;
  SIPE_ROUND (r, prec);
 return r; }
```

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ 33250 2009-11-19 01:57:37Z vinc17/prunille] Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

SIPE: Implementation of the Addition and Subtraction

```
#define SIPE DEFADDSUB(OP, ADD, OPS)
  static inline sipe t sipe ##OP (sipe t x, sipe t y, int prec) \setminus
  { sipe exp t delta = x.e - y.e;
    sipe t r;
    if (SIPE UNLIKELY (x.i == 0))
      return (ADD) ? y : (sipe t) { - y.i, y.e };
    if (SIPE_UNLIKELY (y.i == 0) || delta > prec + 1)
      return x:
    if (delta < - (prec + 1))
      return (ADD) ? y : (sipe t) { - y.i, y.e };
    r = delta < 0?
      ((sipe_t) { (x.i) OPS (y.i << - delta), x.e }) :
      ((sipe_t) { (x.i << delta) OPS (y.i), y.e });
    SIPE_ROUND (r, prec);
    return r; }
SIPE DEFADDSUB(add,1,+)
```

```
SIPE_DEFADDSUB(sub,0,-)
```

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

< ロ > < 同 > < 回 > < 回 >

Timings of the Search For Minimal Algorithms

Timings of the search for minimal algorithms with:

- the IEEE-754 double-precision arithmetic (binary64);
- MPFR 2.4.2-dev with 12-bit precision;
- SIPE with 12-bit precision.

Platform: Linux/x86_64 (3 GHz Pentium D).

Code compiled with GCC 4.3.4, using -O3 -march=native -std=c99.

		Ratios			
Allowed operations	double	MPFR/12	SIPE/12	S/D	M/S
add/sub	0.73	12.21	3.78	5.2	3.2
${\sf add/sub/min/max}$	8.79	91.95	27.33	3.1	3.4
all 6 operations	0.35	2.55	0.75	2.1	3.4

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

・ロト ・回 ト ・目 ト

GdT Arénaire, 2009-11-19 22 / 26

Optimal DblMult Error Bound

Algorithm DblMult defined in *Computing correctly rounded integer powers in floating-point arithmetic*, by Peter Kornerup, Christoph Lauter, Vincent Lefèvre, Nicolas Louvet and Jean-Michel Muller, to appear in *Transactions on Mathematical Software*.

Research report on http://prunel.ccsd.cnrs.fr/ensl-00278430.

Algorithm DblMult $(a_h, a_\ell, b_h, b_\ell)$						
$[t_{1h},t_{1\ell}]$	=	$Fast2Mult(a_h, b_h)$				
t_2	=	$RN(a_h b_\ell)$				
t ₃	=	$RN(a_\ell b_h + t_2)$				
t_4	=	$RN(t_{1\ell}+t_3)$				
$[c_h, c_\ell]$	=	$Fast2Sum(t_{1h}, t_4)$				

[gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]

Optimal DblMult Error Bound [2]

Theorem (from the article)

Let $\varepsilon = 2^{-p}$, where $p \ge 3$ is the precision of the radix-2 floating-point system used. If $|a_{\ell}| \le 2^{-p} |a_h|$ and $|b_{\ell}| \le 2^{-p} |b_h|$, then the returned value $[c_h, c_{\ell}]$ of DblMult satisfies:

$$c_h + c_\ell = (a_h + a_\ell)(b_h + b_\ell)(1 + \alpha)$$
 with $|\alpha| \le \eta$,

where $\eta = 7\varepsilon^2 + 18\varepsilon^3 + 16\varepsilon^4 + 6\varepsilon^5 + \varepsilon^6$.

Quasi-exhaustive tests in small precisions (3 to 8), i.e. with a bounded exponent, using SIPE. \rightarrow Conjectured form of the worst case.

Tests using this conjectured form in precisions 3 to 14, using SIPE. \rightarrow Conjectured error bound $|\alpha| < 6\varepsilon^2$, asymptotically reached.

Proof: work in progress.

DblMult: Quasi-Exhaustive Tests

```
$ ./dblmult 3 -
 [...]
 New worst case: (1.11e5,-1.10e2) * (1.11e5,-1.11e2)
 |eta| = 146 / 2450
     <= 1.1110100000101101001000111011111e-5 <= 5.9591836748e-2</pre>
   $ ./dblmult 4 -
 [...]
 New worst case: (1.011e7,-1.010e3) * (1.101e7,-1.101e3)
 |eta| = 626 / 32370
     <= 1.001111001101100100110011010110e-6 <= 1.9338894039e-2</pre>
   $ ./dblmult 5 -
 [...]
 New worst case: (1.1011e9,-1.0111e4) * (1.0101e9,-1.0101e4)
 |eta| = 2723 / 547491
     <= 1.0100010111110011000111111010010e-8 <= 4.9735977410e-3</pre>
   bound 1.11100101000000110000010000000e-8 (RNDZ) expected
                                           [gdt200911.tex 33250 2009-11-19 01:57:37Z vinc17/prunille]
```

DblMult: Quasi-Exhaustive Tests – Bounds and Timings

Precision	Bound (in binary)	Timing
3	$1.1110100000101101001000111011111 \ \times \ 2^{-5}$	0
4	$1.00111100110110010011001101110 \times 2^{-6}$	0
5	$1.0100010111110011000111111010010 \times 2^{-8}$	0
6	$1.0110100111001110111010010011111 \times 2^{-10}$	0
7	$1.011010001001011000100111110011 \times 2^{-12}$	0.06
8	$1.0111011011000000101110100011 \times 2^{-14}$	0.49
9	$1.0111101010001011100011011110010 \times 2^{-16}$	3.86
10	$1.0111101110111000100000101001001 \times 2^{-18}$	31.4
11	$1.0111110011010000100100001111001 \times 2^{-20}$	254
12	1.0111110111101111000110000001010 $\times 2^{-22}$	2055
13	1.0111111011001000110010100001111 $\times 2^{-24}$	16518
14	1.0111111100111111110101101101101 $\times 2^{-26}$	131522

Note: timings in seconds on a 2.2 GHz AMD Opteron.