Hierarchical Approximations of a Function by Polynomials in LEMA

Vincent LEFĖVRE

Arénaire, INRIA Grenoble - Rhône-Alpes / LIP, ENS-Lyon
2010-02-26

The Problem

Goal: the exhaustive test of the elementary functions for the TMD in a fixed precision (e.g., in binary64), i.e. "find all the breakpoint numbers x such that $f(x)$ is very close to a breakpoint number".

Breakpoint number: machine number or midpoint number.
\rightarrow Worst cases for f and the inverse function f^{-1}.

Hierarchical Approximations by Polynomials

Current implementation (but one could have more than 3 levels):
function f on an interval I

- Finding approximations must be very fast: from the previous one.
- Degree-1 polynomials: fast algorithm that computes a lower bound on the distance between a segment and \mathbb{Z}^{2} (in fact, this distance, but on a larger domain) [filter] + slower algorithms when needed.

Computing the Successive Values of a Polynomial

Example: $P(X)=X^{3}$. Difference table:

On the left: coefficients of the polynomial in the basis

$$
\left\{1, x, \frac{X(X-1)}{2}, \frac{X(X-1)(X-2)}{3!}, \ldots\right\}
$$

Representation in the LEMA Tree

Computations can (and will) be done modulo some constant (much faster).
\rightarrow The corresponding arithmetic must be supported by LEMA.
In practice, some coefficients will be close to 0 (either from above or from below).
\rightarrow In the LEMA tree, notion of magnitude (like with real numbers).
How can this be expressed in LEMA?

- With a list (tuple) containing the coefficients? (But the degree d is not necessarily a constant parameter.)
- With a function taking two arguments i and n returning the coefficient $a_{i}(n)$ of $P(X+n)$ in the basis

$$
\left\{1, X, \frac{X(X-1)}{2}, \frac{X(X-1)(X-2)}{3!}, \ldots\right\} ?
$$

The polynomial object is less visible, but this should be easier.

An Example of Coefficient Values

An example of coefficient values from the current implementation:

```
a0_0 = A6ABF7160809CF4F 3C762E7160F38B4E
a0_1 = 5458A4173B436123 9CAOE833FEB6CB85 ABFCA8C9
a0_2 = 000002B7E1516295 CCAFB049B66COBEA 354AA25BAAB8404F
a0_3 = 000000000000000A DF85458A6CF1C94C 3BA51465E493E36F D8B90AB5
a0_4 = 0000000000000000 000000002B7E1516 2A0AC34F5D426FDA C4D9DF953DOEDFFB 16FE1543
a0_5 = 0000000000000000 0000000000000000 00ADF85458A986FD E62637A70A321BD8 4F1A4229E540A478
a0_6 = 00000000000000000 0000000000000000 000000000002B7E1 51628AED2A6ABF71 58809CF4F3C762E7
a1_0 = 5BFOA8B145769AA5 225B715628DDCEBF
a1_1 = 00000000056FC2A2 C520B9EFDA13A7F9 8A29425F
a1_2 = 0000000000000000 0015BF0A8B14AE65 D47E77DFB318E888
a1_3 = 0000000000000000 000000000000056FC 2A2C53678FA65285 D9F0CD61
a1_4 = 0000000000000000 0000000000000000 0000015BF0A8B150 561FEAAC8725FFD3 CD14C497
a1_5 = 00000000000000000 0000000000000000 00000000000000005 6FC2A2C515DA54D5 7EE2B10139E9E78F
a2_0 = 0000000000000ADF 85458A2BB500A728
a2_1 = 0000000000000000 0000002B7E151629 05D02CC9
a2_2 = 0000000000000000 0000000000000000 ADF85458A573315C
a2_3 = 0000000000000000 0000000000000000 0000000002B7E151 629B3C88
a2_4 = 0000000000000000 0000000000000000 0000000000000000 000ADF85458A2BB4 A9AAFDC5
```


From an Interval to the Next One

The problem (to be considered recursively):

- Input: a polynomial P of degree d on an interval I.
- The interval $/$ is split into subintervals J_{n} of the same length.
- The polynomial P will be approximated by polynomials P_{n} of degree d^{\prime} on the intervals J_{n} (sequentially).
- Goal: generate code to compute the (initial) coefficients of P_{n} very quickly (from the work done for P_{n-1} on J_{n-1}).
- All errors need to be bounded formally: an acceptable error bound will be part of the input, and various parameters (the precision of the coefficients, etc.) will be determined from it.

From an Interval to the Next One [2]

Two methods:

(1) Take into account the computations that haven't been done, i.e. those involving the coefficients of degrees $>d^{\prime}$.
\rightarrow Linear combinations of coefficients: additions and multiplications of coefficients by integer constants (constant in the generated code).
(2) Use the fact that the intervals J_{n} have the same length: each (initial) degree- i coefficient of P_{n} can be seen as the value of a polynomial $a_{i}(n)$. \rightarrow The difference table method can be used: only additions.

Error Bounds

Three kinds of errors:

- Error due to the approximation of function f by a polynomial.
- Approximation errors: coefficients of degree $>d^{\prime}$ are ignored.
\rightarrow Error bound of the form: $\sum_{i=d^{\prime}+1}^{d} U_{i} \cdot\left|a_{i}(0)\right|$
where U_{i} depends on i and the size of the intervals I and J_{n}.
- Rounding errors on the coefficients a_{i} (due to their representation with an absolute precision n_{i}): initial errors and after each computation.
\rightarrow Error bound on $a_{i}(m)$ of the form: $\sum_{j=i}^{d^{\prime}-1} V_{i, j, m} \cdot 2^{-n_{j}}$.
Formally determining U_{i} and $V_{i, j, m}$ can be to difficult to be done automatically. But it should be possible to verify (prove) them with LEMA with conventional error analysis:
- with help of computer algebra software for generic formulas;
- numerically, after instantiation.

Distribution of the Jobs on Different CPU's

2 possibilities:

- Completely independent jobs (as with the current implementation): the domain is split into intervals I, on which f is approximated by a polynomial P and so on. If need be, the code generation can be done on a different machine.
- On some machine (regarded as a server), f is approximated by P on an interval I, which is split into N subintervals J_{n}; the coefficients of P_{n} are computed directly. The corresponding N jobs are distributed on different machines.

Note: the input parameters can be chosen to control the size thus the estimated average execution time of a job (actually the order of magnitude).

LEMA Features That Will Be Needed

- Fast automatic generation of correct (in fact, proved) code, possibly with annotations (for provers, but this is currently limited because of the specific arithmetic).
- Possibility to test various parameters.
- Code instrumentation (was forgotten in most discussions), e.g. to count the number of word additions. For instance, transform the LEMA tree to replace a result x by a pair $\left(x, c_{x}\right)$, and $x+y$ by $\left(x+y, c_{x}+c_{y}+1\right)$?
- Checking that the LEMA tree is correct, e.g. that formulas written by the human are correct.

