Hierarchical Approximations of a Function by Polynomials in LEMA

Vincent LEFÈVRE

Arénaire, INRIA Grenoble - Rhône-Alpes / LIP, ENS-Lyon

2010-02-26

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

The Problem

Goal: the exhaustive test of the elementary functions for the TMD in a fixed precision (e.g., in binary64), i.e. "find all the breakpoint numbers x such that f(x) is very close to a breakpoint number".

Breakpoint number: machine number or midpoint number.

 \rightarrow Worst cases for f and the inverse function f^{-1} .

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

rarchical Approximations in LEMA

Hierarchical Approximations by Polynomials

Current implementation (but one could have more than 3 levels):

- Finding approximations must be very fast: from the previous one.
- Degree-1 polynomials: fast algorithm that computes a lower bound on the distance between a segment and \mathbb{Z}^2 (in fact, this distance, but on a larger domain) [filter] + slower algorithms when needed.

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

< ロ > < 同 > < 回 > < 回 >

Computing the Successive Values of a Polynomial

Example: $P(X) = X^3$. Difference table:

On the left: coefficients of the polynomial in the basis

$$\left\{1, X, \frac{X(X-1)}{2}, \frac{X(X-1)(X-2)}{3!}, \ldots\right\}$$

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

イロト イヨト イヨト イ

Representation in the LEMA Tree

Computations can (and will) be done modulo some constant (much faster). \rightarrow The corresponding arithmetic must be supported by LEMA.

In practice, some coefficients will be close to 0 (either from above or from below). \rightarrow In the LEMA tree, notion of magnitude (like with real numbers).

How can this be expressed in LEMA?

- With a list (tuple) containing the coefficients? (But the degree *d* is not necessarily a constant parameter.)
- With a function taking two arguments *i* and *n* returning the coefficient a_i(n) of P(X + n) in the basis

$$\left\{1, X, \frac{X(X-1)}{2}, \frac{X(X-1)(X-2)}{3!}, \ldots\right\}?$$

The polynomial object is less visible, but this should be easier.

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

イロト イボト イヨト イヨト

An Example of Coefficient Values

An example of coefficient values from the current implementation:

a0_0	=	A6ABF7160809CF4F	3C762E7160F38B4E			
a0_1	=	5458A4173B436123	9CA0E833FEB6CB85	ABFCA8C9		
a0_2	=	000002B7E1516295	CCAFB049B66C0BEA	354AA25BAAB8404F		
a0_3	=	A0000000000000A	DF85458A6CF1C94C	3BA51465E493E36F	D8B90AB5	
a0_4	=	000000000000000000000000000000000000000	00000002B7E1516	2A0AC34F5D426FDA	C4D9DF953D0EDFFB	16FE1543
a0_5	=	000000000000000000000000000000000000000	0000000000000000	00ADF85458A986FD	E62637A70A321BD8	4F1A4229E540A478
a0_6	=	000000000000000000000000000000000000000	0000000000000000	0000000002B7E1	51628AED2A6ABF71	58809CF4F3C762E7
a1_0	=	5BF0A8B145769AA5	225B715628DDCEBF			
a1_1	=	0000000056FC2A2	C520B9EFDA13A7F9	8A29425F		
a1_2	=	000000000000000000000000000000000000000	0015BF0A8B14AE65	D47E77DFB318E888		
a1_3	=	000000000000000000000000000000000000000	000000000056FC	2A2C53678FA65285	D9F0CD61	
a1_4	=	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000015BF0A8B150	561FEAAC8725FFD3	CD14C497
a1_5	=	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000005	6FC2A2C515DA54D5	7EE2B10139E9E78F
a2_0	=	000000000000ADF	85458A2BB500A728			
a2_1	=	000000000000000000000000000000000000000	0000002B7E151629	05D02CC9		
a2_2	=	000000000000000000000000000000000000000	000000000000000000000000000000000000000	ADF85458A573315C		
a2_3	=	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000002B7E151	629B3C88	
a2 4	=	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000	000ADF85458A2BB4	A9AAFDC5

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

《曰》《圖》《臣》《臣》

From an Interval to the Next One

The problem (to be considered recursively):

- Input: a polynomial P of degree d on an interval I.
- The interval I is split into subintervals J_n of the same length.
- The polynomial P will be approximated by polynomials P_n of degree d' on the intervals J_n (sequentially).
- Goal: generate code to compute the (initial) coefficients of P_n very quickly (from the work done for P_{n-1} on J_{n-1}).
- All errors need to be bounded formally: an acceptable error bound will be part of the input, and various parameters (the precision of the coefficients, etc.) will be determined from it.

From an Interval to the Next One [2]

Two methods:

• Take into account the computations that haven't been done, i.e. those involving the coefficients of degrees > d'.

 \rightarrow Linear combinations of coefficients: additions and multiplications of coefficients by integer constants (constant in the generated code).

Use the fact that the intervals J_n have the same length: each (initial) degree-i coefficient of P_n can be seen as the value of a polynomial a_i(n).
→ The difference table method can be used: only additions.

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

イロト イヨト イヨト

Error Bounds

Three kinds of errors:

- Error due to the approximation of function f by a polynomial.
- Approximation errors: coefficients of degree > d' are ignored.
 - \rightarrow Error bound of the form: $\sum_{i=d'+1}^{3} U_i \cdot |a_i(0)|$

where U_i depends on *i* and the size of the intervals *I* and J_n .

• Rounding errors on the coefficients a_i (due to their representation with an absolute precision n_i): initial errors and after each computation.

$$\rightarrow$$
 Error bound on $a_i(m)$ of the form: $\sum_{j=i}^{d^2-1} V_{i,j,m} \cdot 2^{-n_j}$.

Formally determining U_i and $V_{i,j,m}$ can be to difficult to be done automatically. But it should be possible to verify (prove) them with LEMA with conventional error analysis:

- with help of computer algebra software for generic formulas;
- numerically, after instantiation.

Distribution of the Jobs on Different CPU's

2 possibilities:

- Completely independent jobs (as with the current implementation): the domain is split into intervals *I*, on which *f* is approximated by a polynomial *P* and so on. If need be, the code generation can be done on a different machine.
- On some machine (regarded as a server), f is approximated by P on an interval I, which is split into N subintervals J_n ; the coefficients of P_n are computed directly. The corresponding N jobs are distributed on different machines.

Note: the input parameters can be chosen to control the size thus the estimated average execution time of a job (actually the order of magnitude).

[hafp-in-lema.tex 35319 2010-02-26 08:06:23Z vinc17/prunille]

イロト 不得 トイヨト イヨト

LEMA Features That Will Be Needed

- Fast automatic generation of correct (in fact, proved) code, possibly with annotations (for provers, but this is currently limited because of the specific arithmetic).
- Possibility to test various parameters.
- Code instrumentation (was forgotten in most discussions), e.g. to count the number of word additions. For instance, transform the LEMA tree to replace a result x by a pair (x, c_x), and x + y by (x + y, c_x + c_y + 1)?
- Checking that the LEMA tree is correct, e.g. that formulas written by the human are correct.

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

イロト イボト イヨト イヨト