# Correctly Rounded Arbitrary-Precision Floating-Point Summation

### Vincent LEFÈVRE

AriC, Inria Grenoble - Rhône-Alpes / LIP, ENS-Lyon

RAIM 2016, Banyuls-sur-Mer, 2016-06-28

《曰》 《聞》 《臣》 《臣》 三臣 …

[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

# Introduction to GNU MPFR

Goal: complete rewrite of the mpfr\_sum function for the future GNU MPFR 4.

### GNU MPFR in a few words:

- An efficient *multiple-precision floating-point* library with *correct rounding* (and signed zeros, infinities, NaN, and exceptions, but no subnormals).
- Radix 2. Each number has it *own precision*  $\ge 1$  (or 2 before MPFR 4).
- 5 rounding modes: nearest-even; toward  $-\infty$ ,  $+\infty$ , 0; away from zero. The functions return the sign of the error: *ternary value*.

### About the GNU MPFR internals:

- Based on GNU MP, mainly the low-level *mpn* layer. A multiple-precision natural number: array of 32-bit or 64-bit integers, called *limbs*.
- Representation of a floating-point number with 3 fields: sign, significand (array of limbs, with value in [1/2, 1[), exponent in  $[1 2^{62}, 2^{62} 1]]$ . Special data represented with special values in the exponent field.

#### mpfr\_sum: correctly rounded sum of N numbers $(N \ge 0)$ .

# The Old mpfr\_sum Implementation

#### Demmel and Hida's accurate summation algorithm + Ziv loop.

MPFR 3.1.3 [2015-06] and earlier: mpfr\_sum was buggy with different precisions. Reference here: trunk r8851 / MPFR 3.1.4 [2016-03] (latest release).  $\land$ 

#### Performance issues:

- The working precision must be the same for all inputs and the output. ✓
  → The maximum precision had to be chosen as the base precision (bug fix).
- The exact result may be very close to a *breakpoint*. Uncommon case, but... Large exponent range → *critical issue* (e.g., crashes due to lack of memory).
- $\bullet$  High-level for MPFR (mpfr\_add calls).  $\rightarrow$  Prevents good optimization.

### Specification (behavior) issues:

- The sign of an exact zero result is not specified.
- The *ternary value* is valid only when zero is returned: for some exact results, one knows that they are exact, otherwise one has no information.

・ロト ・回ト ・ヨト ・ヨト

# The New mpfr\_sum Algorithm and Implementation

#### Goals:

- As fast as possible. In particular, the exponent range should no longer matter.  $\rightarrow$  Low level (*mpn*), based on the representation of the numbers.
- Completely specified. Exact result 0: same sign as a succession of binary +.

### Basic ideas: [r10503, 2016-06-24]

- **9** Handle special inputs (NaN, infinities, only zeros,  $N_{\text{regular}} \leq 2$ ). Otherwise:
- Single memory allocation (stack or heap): accumulator, temporary area...
- Fixed-point accumulation by blocks in some window [minexp,maxexp[ (re-iterate with a shifted window in case of cancellation): sum\_raw. Done in two's complement representation.
- If the Table Maker's Dilemma (TMD) occurs, then compute the sign of the error term by using the same method (sum\_raw) in a low precision.
- **Solution Copy/shift** the truncated result to the destination (normalized).
- Solution Convert to sign + magnitude, with correction term at the same time.

Just an example (not the common case), covering most issues (cancellations...).

### Simplification for readability:

- Small blocks (may be impossible in practice: the accumulator size is a multiple of the limb size, i.e. 32 or 64).
- The numbers are ordered (in the algorithm, there are loops over all the numbers and the order does not matter).
- We will not show the accumulator, just what is computed at each step.

Vincent LEFÈVRE (Inria / LIP. ENS-Lvon)

・ロト ・回ト ・ヨト ・ヨト

### The New mpfr\_sum: An Example [2]

MPFR\_RNDN (roundTiesToEven), output precision sq = 4.

 $N_{\rm regular} = 10$  input numbers, each with its own precision:

- $x_0 = +0.1011101000010 \cdot 2^0$
- $x_1 = -0.10001 \cdot 2^0$
- $x_2 = -0.11000011 \cdot 2^{-2}$
- $x_3 = -0.11101 \cdot 2^{-8}$
- $x_4 = -0.11010 \cdot 2^{-9}$
- $x_5 = +0.10101 \cdot 2^{-1000}$
- $x_6 = +0.10001 \cdot 2^{-2000}$
- $x_7 = -0.10001 \cdot 2^{-2000}$
- $x_8 = -0.10000 \cdot 2^{-3000}$
- $x_9 = +0.10000 \cdot 2^{-4000}$

- + 1011101000010
- 10001
- 11000011
  - 11101
- 11010

[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

# The New mpfr\_sum: An Example [3]

First iteration: [minexp, maxexp[] = [-8, 0[] (maxexp: chosen from the maximum exponent; minexp: chosen from various parameters, see details later).

Only 3 input numbers are concerned:

$$-$$
 minexp = -8

- + 10111010[00010]
- 10001
- 110000[11]

...000000010 (If the signs were reversed: ...111111110, e = -7)  $\Box$  e = -6

During the same loop over all the input numbers, we compute the next maxexp: Let  $\mathcal{T} = \{i : Q(x_i) < \text{minexp}\}$ , where Q(x) is the exponent of the last bit of x, be the indices of the inputs that have not been fully taken into account. Then

$$\max \exp 2 = \sup_{i \in \mathcal{T}} \min(E(x_i), \min \exp) = \min \exp = -8.$$

7 / 17

 [raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]
 <</td>
 →
 <</td>
 →
 <</td>
 >
 <</td>
 ×

 >

 ×

 >

 ×

 ×

 ×

 ×
 ×
 >
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×
 ×

# The New mpfr\_sum: An Example [4]

We have computed an approximation to the sum and we have an error bound:  $N_{\text{regular}} \cdot 2^{\text{maxexp2}}$ , or  $2^{\text{err}}$  with  $\text{err} = \text{maxexp2} + \lceil \log_2(N_{\text{regular}}) \rceil$ .

The accuracy test is of the form:  $e - err \ge prec$ , where prec is (currently) sq + 3 = 7. Here,  $e - err = (-6) - (-8) - \lceil \log_2(N_{regular}) \rceil \le 0 < prec$ .  $\rightarrow$  We need at least another iteration.

Second iteration: [minexp, maxexp[] = [-17, -8[].

 $\dots 0010 \qquad \leftarrow \text{ previous sum (shifted in the accumulator)}$ 

- + 00010
- 11
- 11101
- 11010

...0000000000000

2016-06-28 09:08:02Z vinc17/zira]

Full cancellation (here with a big gap:  $maxexp2 = -1000 \ll minexp$ ).  $\rightarrow$  New iteration with maxexp := maxexp2 just like in the first iteration.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

8 / 17

# The New mpfr\_sum: An Example [5]

The next and last 5 input numbers:

 $\begin{array}{rcl} x_5 &=& +0.10101 \cdot 2^{-1000} \\ x_6 &=& +0.10001 \cdot 2^{-2000} \\ x_7 &=& -0.10001 \cdot 2^{-2000} \\ x_8 &=& -0.10000 \cdot 2^{-3000} \\ x_9 &=& +0.10000 \cdot 2^{-4000} \end{array}$ 

Third iteration: [minexp, maxexp[] = [-1008, -1000[].

Truncated sum =  $x_5 = +0.10101 \cdot 2^{-1000}$ .

 $e - err = (-1000) - (-2000) - 4 \ge 7 = prec$ , so that the truncated sum is accurate enough, but it is close to a *breakpoint* (midpoint): TMD.

#### To solve the TMD:

- Do *not* increase the precision (as usually done for the elementary functions), due to potentially huge gaps (here between  $x_5$  and  $x_6$ ).
- Instead, determine the sign of the "error term" by computing this term to 1-bit target precision, using the same method (prec = 1).

# The New mpfr sum: An Example [6]

The input numbers used for the error term:

- $x_6 = +0.10001 \cdot 2^{-2000}$
- $x_7 = -0.10001 \cdot 2^{-2000}$
- $x_8 = -0.10000 \cdot 2^{-3000}$
- $x_9 = +0.10000 \cdot 2^{-4000}$

First iteration of the TMD resolution: full cancellation between  $x_6$  and  $x_7$ .

Second iteration of the TMD resolution:  $x_8$ ; accurate enough  $\rightarrow$  negative. Correctly rounded sum =  $+0.1010 \cdot 2^{-1000}$ .

**Technical note:** 2 cases to initiate the TMD resolution.

- Here, the gap between the breakpoint and the remaining bits is large enough. We start with a zeroed new accumulator.
- But a part of the error term may have already been computed in the lower part of the accumulator. In such a case, the new accumulator is initialized with some of these bits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

# The New mpfr\_sum: Accumulation (sum\_raw)

To implement the steps presented in the example (before rounding)...

#### Function for accumulation: sum\_raw

Computes a truncated sum in an accumulator such that if the exact sum is 0, return 0, otherwise satisfying  $e - err \ge prec$ , where e is the exponent of the truncated sum.

### Calls of sum\_raw:

- Main approximation: prec = sq + 3; zeroed accumulator in input.
- TMD resolution, if necessary: prec = 1 (only the sign of the result is needed); the accumulator may be zeroed or initialized with some of the lowest bits from the main approximation.

< □ > < 同 > < 三 > < 三 >

# The New mpfr\_sum: Accumulation (sum\_raw) [2]

The accumulator, for the first iteration:

- $cq = \lceil log_2(N_{regular}) \rceil + 1$  bits for the sign bit and to avoid overflows.
- sq bits: output precision.
- $dq \ge \lceil \log_2(N_{regular}) \rceil + 2$  bits to take into account truncation errors.

**Example** of first iteration and after a partial cancellation ( $\rightarrow$  shift):



maxexp2: maximum exponent of the *tails* (MPFR\_EXP\_MIN if no tails).

# The New mpfr\_sum: Correction (in short)

We now have 3 terms: the sq-bit truncated significand S, a trailing term t in the accumulator such that  $0 \le t < 1$  ulp, and an error on the trailing term.

ightarrow The error arepsilon on S is of the form:  $-2^{-3} \operatorname{ulp} \leqslant arepsilon < (1+2^{-3}) \operatorname{ulp}$ .

4 correction cases, depending on  $\varepsilon$  (from t and possibly a TMD resolution), the sign of the significand, the rounding bit, and the rounding mode:

 $\texttt{corr} = \left\{ \begin{array}{ll} -1: \; \texttt{equivalent to nextDown} \\ 0: \; \texttt{no correction} \\ +1: \; \texttt{equivalent to nextUp} \\ +2: \; \texttt{equivalent to 2 consecutive nextUp} \end{array} \right.$ 

This is done *efficiently* with:

• For  $sq \ge 2$ , one-pass operation on the two's complement significand:

- For positive results: x + corr.
- For negative results:  $\overline{x} + (1 corr)$ .

In case of change of binade, just set the MSB to 1 and correct the exponent.

• For sq = 1, specific code (but trivial).

Vincent LEFÈVRE (Inria / LIP. ENS-Lvon)

### Tests

### Tests needed to detect various possible issues:

- unnoticed error in the pen-and-paper proof (complex due to many cases);
- coding error, such as typos (without a full formal proof of MPFR);
- bug in MPFR, such as internal utility macros (this did happen: r9295);
- bug in compilers;

and to check that some bounds in the pen-and-paper proof are optimal.

### Different kinds of tests, including:

- Special values (e.g., with combinations of NaN, infinities and zeroes).
- Specific tests to trigger particular cases in the implementation. Comparison with the sum computed exactly with mpfr\_add then rounded.
- Generic random tests with cancellations (no full check, though).
- Tests with underflows and overflows.
- Check for value coverage in the TMD cases to make sure that the various combinations have occurred in the tests (this could be improved).

Vincent LEFÈVRE (Inria / LIP. ENS-Lvon)

イロト 不得 トイヨト イヨト

### Timings

### Comparison of 3 algorithms:

- sum\_old: mpfr\_sum from MPFR 3.1.4 (old algo).
- sum\_new: mpfr\_sum from the trunk patched for MPFR 3.1.4 (new algo).
- sum\_add: basic sum implementation with mpfr\_add (inaccurate and sensitive to the order of the inputs).

### Random inputs with various sets of parameters:

- $\bullet\,$  array size  $n=10^1,\,10^3$  or  $10^5;$
- small or large input precision precx (the same one);
- small or large output precision precy;
- inputs uniformly distributed in [-1, 1], or with scaling by a uniform distribution of the exponents in  $[\![0, 10^8[\![;$
- partial cancellation or not.

Vincent LEFÈVRE (Inria / LIP. ENS-Lvon)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Timings [2]

Inaccurate timings (up to a factor 3 between two calls), but we focus on much larger factors (theoretically unbounded).

#### Conclusion:

- sum\_new vs sum\_add:
  - sometimes slower, due to the accuracy requirements;
  - sometimes faster, as low level and low significant bits may be ignored.
- sum new vs sum old:
  - much faster in most cases:
  - much slower in some pathological cases:  $precy \ll precx$  and there is a cancellation, due to the fact that the reiterations are always done in a low precision (assuming that a reiteration would stop with a large probability). Change in the future?

Sources and results are provided in the MPFR repository:

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/

### Conclusion and Future Work

#### Major improvements over the old algorithm and implementation:

- Much faster in most tested cases (application dependent, though).
- Much less memory in some cases (no more crashes in simple cases).
- Fully specified, with ternary value (as usual).

**Temporary memory:** twice the output precision + a few limbs.

For the next MPFR release: GNU MPFR 4.0.

#### Possible future work:

- Determine a worst-case time complexity (could be pessimistic).
- Bad cases could be improved, but this could slow down the average case.
- What is the average case? Too much context dependent.
  - $\rightarrow$  Based on real-world applications?

Vincent LEFÈVRE (Inria / LIP. ENS-Lvon)

・ロト ・回ト ・ヨト ・ヨト