
Correctly Rounded Arbitrary-Precision
Floating-Point Summation

Vincent LEFÈVRE

AriC, Inria Grenoble – Rhône-Alpes / LIP, ENS-Lyon

RAIM 2016, Banyuls-sur-Mer, 2016-06-28

[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

Introduction to GNU MPFR

Goal: complete rewrite of the mpfr_sum function for the future GNU MPFR 4.

GNU MPFR in a few words:

An efficient multiple-precision floating-point library with correct rounding

(and signed zeros, infinities, NaN, and exceptions, but no subnormals).

Radix 2. Each number has it own precision > 1 (or 2 before MPFR 4).

5 rounding modes: nearest-even; toward −∞, +∞, 0; away from zero.
The functions return the sign of the error: ternary value.

About the GNU MPFR internals:

Based on GNU MP, mainly the low-level mpn layer. A multiple-precision
natural number: array of 32-bit or 64-bit integers, called limbs.

Representation of a floating-point number with 3 fields: sign, significand
(array of limbs, with value in [1/2, 1[), exponent in J1− 262, 262 − 1K.
Special data represented with special values in the exponent field.

mpfr_sum: correctly rounded sum of N numbers (N > 0).

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 2 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The Old mpfr_sum Implementation

Demmel and Hida’s accurate summation algorithm + Ziv loop.

MPFR 3.1.3 [2015-06] and earlier: mpfr_sum was buggy with different precisions.
Reference here: trunk r8851 / MPFR 3.1.4 [2016-03] (latest release).

Performance issues:

The working precision must be the same for all inputs and the output.
→ The maximum precision had to be chosen as the base precision (bug fix).

The exact result may be very close to a breakpoint. Uncommon case, but. . .
Large exponent range → critical issue (e.g., crashes due to lack of memory).

High-level for MPFR (mpfr_add calls). → Prevents good optimization.

Specification (behavior) issues:

The sign of an exact zero result is not specified.

The ternary value is valid only when zero is returned: for some exact results,
one knows that they are exact, otherwise one has no information.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 3 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum Algorithm and Implementation

Goals:

As fast as possible. In particular, the exponent range should no longer matter.
→ Low level (mpn), based on the representation of the numbers.

Completely specified. Exact result 0: same sign as a succession of binary +.

Basic ideas: [r10503, 2016-06-24]
1 Handle special inputs (NaN, infinities, only zeros, Nregular 6 2). Otherwise:
2 Single memory allocation (stack or heap): accumulator, temporary area. . .
3 Fixed-point accumulation by blocks in some window Jminexp, maxexpJ

(re-iterate with a shifted window in case of cancellation): sum_raw.
Done in two’s complement representation.

4 If the Table Maker’s Dilemma (TMD) occurs, then compute the sign of
the error term by using the same method (sum_raw) in a low precision.

5 Copy/shift the truncated result to the destination (normalized).
6 Convert to sign + magnitude, with correction term at the same time.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 4 / 17

https://gforge.inria.fr/scm/viewvc.php/mpfr/trunk/src/sum.c?revision=10503&view=markup


[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: An Example

Just an example (not the common case), covering most issues (cancellations. . . ).

Simplification for readability:

Small blocks (may be impossible in practice: the accumulator size is a
multiple of the limb size, i.e. 32 or 64).

The numbers are ordered (in the algorithm, there are loops over all the
numbers and the order does not matter).

We will not show the accumulator, just what is computed at each step.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 5 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: An Example [2]

MPFR_RNDN (roundTiesToEven), output precision sq = 4.

Nregular = 10 input numbers, each with its own precision:

x0 = +0.1011101000010 · 20 + 1011101000010

x1 = −0.10001 · 20 - 10001

x2 = −0.11000011 · 2−2 - 11000011

x3 = −0.11101 · 2−8 - 11101

x4 = −0.11010 · 2−9 - 11010

x5 = +0.10101 · 2−1000

x6 = +0.10001 · 2−2000

x7 = −0.10001 · 2−2000

x8 = −0.10000 · 2−3000

x9 = +0.10000 · 2−4000

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 6 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: An Example [3]

First iteration: Jminexp, maxexpJ = J−8, 0J (maxexp: chosen from the maximum
exponent; minexp: chosen from various parameters, see details later).

Only 3 input numbers are concerned:

minexp = -8

+ 10111010[00010]

- 10001

- 110000[11]

...000000010 (If the signs were reversed: ...111111110, e = -7)
e = -6

During the same loop over all the input numbers, we compute the next maxexp:
Let T = {i : Q(xi) < minexp}, where Q(x) is the exponent of the last bit of x ,
be the indices of the inputs that have not been fully taken into account. Then

maxexp2 = sup
i∈T

min(E (xi), minexp) = minexp = −8.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 7 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: An Example [4]

We have computed an approximation to the sum and we have an error bound:
Nregular · 2maxexp2, or 2err with err = maxexp2 + ⌈log2(Nregular)⌉.

The accuracy test is of the form: e− err > prec, where prec is (currently)
sq + 3 = 7. Here, e− err = (−6)− (−8)− ⌈log2(Nregular)⌉ 6 0 < prec.

→ We need at least another iteration.

Second iteration: Jminexp, maxexpJ = J−17,−8J.

...0010 ← previous sum (shifted in the accumulator)
+ 00010

- 11

- 11101

- 11010

...0000000000000

Full cancellation (here with a big gap: maxexp2 = −1000≪ minexp).
→ New iteration with maxexp := maxexp2 just like in the first iteration.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 8 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: An Example [5]

The next and last 5 input numbers:

x5 = +0.10101 · 2−1000

x6 = +0.10001 · 2−2000

x7 = −0.10001 · 2−2000

x8 = −0.10000 · 2−3000

x9 = +0.10000 · 2−4000

Third iteration: Jminexp, maxexpJ = J−1008,−1000J.

Truncated sum = x5 = +0.10101 · 2−1000.

e− err = (−1000)− (−2000)− 4 > 7 = prec, so that the truncated sum is
accurate enough, but it is close to a breakpoint (midpoint): TMD.

To solve the TMD:

Do not increase the precision (as usually done for the elementary functions),
due to potentially huge gaps (here between x5 and x6).

Instead, determine the sign of the “error term” by computing this term to
1-bit target precision, using the same method (prec = 1).

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 9 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: An Example [6]

The input numbers used for the error term:

x6 = +0.10001 · 2−2000

x7 = −0.10001 · 2−2000

x8 = −0.10000 · 2−3000

x9 = +0.10000 · 2−4000

First iteration of the TMD resolution: full cancellation between x6 and x7.

Second iteration of the TMD resolution: x8; accurate enough → negative.

Correctly rounded sum = +0.1010 · 2−1000.

Technical note: 2 cases to initiate the TMD resolution.

Here, the gap between the breakpoint and the remaining bits is large enough.
We start with a zeroed new accumulator.

But a part of the error term may have already been computed in the lower
part of the accumulator. In such a case, the new accumulator is initialized
with some of these bits.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 10 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: Accumulation (sum_raw)

To implement the steps presented in the example (before rounding). . .

Function for accumulation: sum_raw

Computes a truncated sum in an accumulator such that if the exact sum is 0,
return 0, otherwise satisfying e− err > prec, where e is the exponent of the
truncated sum.

Calls of sum_raw:

Main approximation: prec = sq + 3; zeroed accumulator in input.

TMD resolution, if necessary: prec = 1 (only the sign of the result is
needed); the accumulator may be zeroed or initialized with some of the
lowest bits from the main approximation.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 11 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: Accumulation (sum_raw) [2]

The accumulator, for the first iteration:

cq = ⌈log2(Nregular)⌉+ 1 bits for the sign bit and to avoid overflows.

sq bits: output precision.

dq > ⌈log2(Nregular)⌉+ 2 bits to take into account truncation errors.

Example of first iteration and after a partial cancellation (→ shift):

[--------]-----------------------------------]

cq maxexp sq + dq minexp

Before shift: 00000000000000000000000000001----------------]

<--- identical bits (0) --->

<------- 26 zeros ------->

After shift: 001-----------------00000000000000000000000000

This iteration: minexp maxexp2

Next iteration: maxexp minexp

maxexp2: maximum exponent of the tails (MPFR_EXP_MIN if no tails).

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 12 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

The New mpfr_sum: Correction (in short)

We now have 3 terms: the sq-bit truncated significand S, a trailing term t in the
accumulator such that 0 6 t < 1 ulp, and an error on the trailing term.

→ The error ε on S is of the form: −2−3 ulp 6 ε < (1 + 2−3) ulp.

4 correction cases, depending on ε (from t and possibly a TMD resolution), the
sign of the significand, the rounding bit, and the rounding mode:

corr =















−1 : equivalent to nextDown
0 : no correction

+1 : equivalent to nextUp
+2 : equivalent to 2 consecutive nextUp

This is done efficiently with:

For sq > 2, one-pass operation on the two’s complement significand:
◮ For positive results: x + corr.
◮ For negative results: x + (1 − corr).

In case of change of binade, just set the MSB to 1 and correct the exponent.

For sq = 1, specific code (but trivial).

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 13 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

Tests

Tests needed to detect various possible issues:

unnoticed error in the pen-and-paper proof (complex due to many cases);

coding error, such as typos (without a full formal proof of MPFR);

bug in MPFR, such as internal utility macros (this did happen: r9295);

bug in compilers;

and to check that some bounds in the pen-and-paper proof are optimal.

Different kinds of tests, including:

Special values (e.g., with combinations of NaN, infinities and zeroes).

Specific tests to trigger particular cases in the implementation. Comparison
with the sum computed exactly with mpfr_add then rounded.

Generic random tests with cancellations (no full check, though).

Tests with underflows and overflows.

Check for value coverage in the TMD cases to make sure that the various
combinations have occurred in the tests (this could be improved).

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 14 / 17

https://gforge.inria.fr/scm/viewvc.php/mpfr?view=revision&revision=9295


[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

Timings

Comparison of 3 algorithms:

sum_old: mpfr_sum from MPFR 3.1.4 (old algo).

sum_new: mpfr_sum from the trunk patched for MPFR 3.1.4 (new algo).

sum_add: basic sum implementation with mpfr_add (inaccurate and
sensitive to the order of the inputs).

Random inputs with various sets of parameters:

array size n = 101, 103 or 105;

small or large input precision precx (the same one);

small or large output precision precy;

inputs uniformly distributed in [−1, 1], or with scaling by a uniform
distribution of the exponents in J0, 108J;

partial cancellation or not.

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 15 / 17



[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

Timings [2]

Inaccurate timings (up to a factor 3 between two calls), but we focus on much
larger factors (theoretically unbounded).

Conclusion:

sum_new vs sum_add:
◮ sometimes slower, due to the accuracy requirements;
◮ sometimes faster, as low level and low significant bits may be ignored.

sum_new vs sum_old:
◮ much faster in most cases;
◮ much slower in some pathological cases: precy ≪ precx and there is a

cancellation, due to the fact that the reiterations are always done in a low
precision (assuming that a reiteration would stop with a large probability).
Change in the future?

Sources and results are provided in the MPFR repository:

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 16 / 17

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/


[raim2016.tex 90058 2016-06-28 09:08:02Z vinc17/zira]

Conclusion and Future Work

Major improvements over the old algorithm and implementation:

Much faster in most tested cases (application dependent, though).

Much less memory in some cases (no more crashes in simple cases).

Fully specified, with ternary value (as usual).

Temporary memory: twice the output precision + a few limbs.

For the next MPFR release: GNU MPFR 4.0.

Possible future work:

Determine a worst-case time complexity (could be pessimistic).

Bad cases could be improved, but this could slow down the average case.

What is the average case? Too much context dependent.
→ Based on real-world applications?

Vincent LEFÈVRE (Inria / LIP, ENS-Lyon) Correctly Rounded Arbitrary-Precision Summation RAIM 2016, Banyuls, 2016-06-28 17 / 17


