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Introduction

MPFR: Arbitrary-precision floating-point system in base 2.

Considered here: the addition of numbers having the same sign.

• The addition of floating-point numbers: a “simple” operation,
easy to understand? But many different cases for the generic
addition (with arbitrary precisions).

• In MPFR, the addition had been buggy for a long time (missing
particular cases. . . ), despite several patches.
→ I completely rewrote the addition function (October 2001).

• How about the complexity? Seems obvious, but. . .
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The MPFR Floating-Point Addition

Note: The negative case is obtained from the positive case.

Input:

• Positive numbers x and y of resp. precisions m ≥ 2 and n ≥ 2.

• Target precision p ≥ 2.

• Rounding mode � (to −∞, to +∞, to 0, or to the nearest).

Output:

• �p(x + y), i.e. correctly-rounded result.

• Sign of �p(x + y) − (x + y), called ternary value.
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The Floating-Point Representation

• All the values considered here are positive real numbers.

• Floating-point representation in precision p:

0.b1b2b3 . . . bp × 2e

where the bi’s are binary digits (0 or 1) forming the mantissa and
e is the exponent (a bounded integer).

• The representation is normalized: b1 6= 0, i.e. b1 = 1.

• We do not consider subnormals here (MPFR does not support
them).
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Computation Steps

The addition (without considering optimization) consists in:

1. ordering x and y so that ex ≥ ey,

2. computing the exponent difference d = ex − ey ,

3. shifting the mantissa of y by d positions to the right,

4. initializing the exponent e of the result to ex (temporary value),

5. adding the mantissa of x and the shifted mantissa of y (shifting
the result by 1 position to the right and incrementing e if there is
a carry),

6. rounding the result (setting the mantissa to 0.1 and incrementing
e if a carry is generated due to an upward rounding).
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Exponent Considerations

• Assume ex ≥ ey .

• Addition of the aligned mantissas with rounding, with 1 or 2

possible carries (due to rounding and arbitrary precision, e.g.
0.111 + 0.111 gives 0.10 × 22 for p = 2, rounding upwards).

• Exponent ex+y = ex + carries.

Underflow: impossible.

Possible overflow, but no practical or theoretical difficulties.
→ Will not be considered here (i.e. assume unbounded exponents).

→ We now concentrate on the addition of the mantissas.
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Rounding an Exact Real Value

Canonical infinite mantissa of the exact result: 0.1b2b3b4b5 . . .

The rounding can be expressed as a function of the rounding mode,
the rounding bit r = bp+1 and the sticky bit s = bp+2 ∨ bp+3 ∨ . . .

r / s downwards upwards to the nearest

0 / 0 exact exact exact

0 / 1 − + −

1 / 0 − + − / +

1 / 1 − + +

“−” means: exact mantissa truncated to precision p.
“+” means: add 2−p to the truncated mantissa (→ possible carry).
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Finding an Efficient Algorithm

Trailing bits of x and/or y may have no influence on the result.
For instance:

0.101010000010010001 + 0.10001 × 2−9

rounded to 4 bits.

Only the first 6 bits 101010 of x (and none for y) are necessary to
deduce the result and the ternary value.

The goal: take into account as few input bits as possible.

Note: bits are grouped into words in memory. To simplify, we give
here a bit-based description of the algorithm.
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The addition can be written x + y = t + ε, where

• t (main term) is computed with the first p + 2 bits of x and the
corresponding max(p + 2 − d, 0) bits of y,

• ε (error term) satisfies 0 ≤ ε < 2ex−p−1 ≤ (1/2) ulp(x + y), with
equality if there are no carries.

Graphically:

t

x′ x′′

y′ y′′

where x′′ may be empty and either y′ or y′′ may be empty (and x′′

may end after y′′, and if y′ is empty, y′′ may start after x′′ ends).
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Computing the Main Term

The main term t is computed and written in time Θ(p):

• an Ω(p) time is necessary to fill the p + 2 bits;

• a linear time is obviously sufficient.

Note: different ways to compute the main term, due to different
overlappings and trailing zeros (see the paper for the details
concerning the MPFR implementation).

Possible carry detection (to avoid a separate shift) by looking at the
most significant bits of x and y first (not implemented in MPFR).

Special bits:







Bit p + 1: temporary rounding bit rt.

Bit p + 2: following bit f .
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If a Carry Was Generated. . .

Then p + 3 bits of the result have really been computed (instead of
p + 2).

→ In the implementation, consider that the bit p + 3 comes from the
first iteration of the processing described in a few slides and must be
taken into account accordingly.

→ In the following tables, we may assume that p + 2 bits of the result
have been computed and the bit p + 3 is part of the error term.
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Following Bit and Error → Rounding and Sticky Bits

Let u denote the weight 2−(p+2) of the bit p + 2 (following bit).
So, 0 ≤ ε < 2u.

f ε r s example

0 ε = 0 = 0 1000r0f + 0.0000

0 ε > 0 = 1 1000r0f + 1.1101

1 ε < u = 1 1000r1f + 0.1101

1 ε = u + 0 1111r1f + 1.0000

1 ε > u + 1 1000r1f + 1.0001

“=” means: the rounding bit is the temporary rounding bit p + 1.
“+” means: 1 must be added to the temporary rounding bit p + 1.
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rt f ε r s downwards upwards to the nearest

0 0 ε = 0 0 0 exact exact exact

0 0 ε > 0 0 1 − + −

0 1 ε < u 0 1 − + −

0 1 ε = u 1 0 − + − / +

0 1 ε > u 1 1 − + +

1 0 ε = 0 1 0 − + − / +

1 0 ε > 0 1 1 − + +

1 1 ε < u 1 1 − + +

1 1 ε = u 0 0 exact exact exact

1 1 ε > u 0 1 − + −
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Iteration Over the Remaining Bits

Assume one iterates over bits p + 3, p + 4, p + 5. . . (best solution?).

At each iteration, the mantissa of the temporary result has the form:
0.1z2z3 . . . zprfff . . . fff with an error in the interval [0, 2) ulp, and
one iterates as long as the bits after the (temporary) rounding bit are
identical.

• f = 0: while xi = yi−d = 0.

• f = 1: while xi + yi−d = 1. If xi = yi−d = 1, then point f = 0.

Particular case: y hasn’t been read yet, i.e. d ≥ p + 2.
If f = 0, take into account the fact that y1 = 1: s = 1.
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The Complexity

We assume that:

• the mantissa bits are 0 and 1 with equal probabilities,

• x and y are independent numbers.

Time complexity in Ω(p) and in O(m + n + p).
Worst case in Θ(m + n + p). Average case in Θ(p).

In some cases: many possible orders to test the trailing bits.

Note: As the natural distribution of the real numbers is logarithmic,
in a very theoretical point of view, it is better to start with the least
significant bits for the 0 equality test (i.e. when f = 0).
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The MPFR Implementation

• Bits grouped into limbs (32-bit or 64-bit unsigned integer).

• Bit-based algorithm → limb-based algorithm (not difficult, but
more cases to deal with!).

• Bits p + 1 and p + 2 in variables rb and fb, determined on the fly,
as soon as they are known (again, many cases. . . ).

• In addition to the p bits of the target, more bits may be taken into
account for the main term (to fill the least significant limb).

Various cases in the main term computation; in particular: whether d

is a multiple of the limb size. Very dependent on the GMP functions.
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Various cases for the error term:

• x′′ has not entirely been read and y′′ has not been read yet.

• x′′ and y′′ overlap.

• x′′ has not entirely been read and y′′ has entirely been read.

• x′′ has entirely been read and y′′ has not been read yet.

• x′′ has entirely been read and y′′ has not entirely been read.

• x′′ and y′′ have entirely been read.

In the overlapping case: two limbs are added. The loop ends as soon
as the result is different from 0 for f = 0 or the maximum limb value
MP_LIMB_T_MAX for f = 1.
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Conclusion

• Not so simple, after all. . .

• The (bit-based) theoretical analysis could help to improve the
current MPFR implementation.

• The theoretical analysis could also be useful to provide a full
mechanically-checked proof.

• Future work: deal with the subtraction, but more difficult (e.g.
possible cancellation, when subtracting very close numbers).
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